(4/5)x+2/3=2

Simple and best practice solution for (4/5)x+2/3=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4/5)x+2/3=2 equation:



(4/5)x+2/3=2
We move all terms to the left:
(4/5)x+2/3-(2)=0
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain (4/5)x-2+2/3=0
We add all the numbers together, and all the variables
(+4/5)x-2+2/3=0
We multiply parentheses
4x^2-2+2/3=0
We multiply all the terms by the denominator
4x^2*3+2-2*3=0
We add all the numbers together, and all the variables
4x^2*3-4=0
Wy multiply elements
12x^2-4=0
a = 12; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·12·(-4)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*12}=\frac{0-8\sqrt{3}}{24} =-\frac{8\sqrt{3}}{24} =-\frac{\sqrt{3}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*12}=\frac{0+8\sqrt{3}}{24} =\frac{8\sqrt{3}}{24} =\frac{\sqrt{3}}{3} $

See similar equations:

| 3(x+2)-5(2x)=0 | | 8x−12=4x+2(2x−6) | | 4r+9=27 | | 3÷4d-1÷3=1÷8 | | -x/8=4 | | x²-1.4x+0.49=0.35 | | 3x^2-18x+87=0 | | 3/4b-1/3=1/8 | | 75+19m=360 | | -5x×3=35 | | 5x-6=274 | | 4/12=3/r | | 34n-150=360 | | 1=0.1x-0.3x-3 | | 5-x×3=35 | | -x+14=-2x-1-x | | 2/9=d/15 | | -5(x+9)=-9x-33 | | 2x-13=33 | | 8(8x+8)+2x-4=66x+69 | | x−3(3x+7)=3−8x | | 9x*66=x | | 7x^2-42x+1=0 | | 3/2x+9=9/3x+6 | | 2f(-8f-15)=3(4f-5) | | 216=8(-1+4r) | | 3.8-0.5x=0.7x-0.1 | | (1/7x)+x-6=0 | | 2f+(-8f-15)=3(4f-5 | | F(x)=(x+8)(x-11) | | -186=-6(3x+7) | | -170=5(6x-4) |

Equations solver categories