F(x)=(x+8)(x-11)

Simple and best practice solution for F(x)=(x+8)(x-11) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=(x+8)(x-11) equation:



(F)=(F+8)(F-11)
We move all terms to the left:
(F)-((F+8)(F-11))=0
We multiply parentheses ..
-((+F^2-11F+8F-88))+F=0
We calculate terms in parentheses: -((+F^2-11F+8F-88)), so:
(+F^2-11F+8F-88)
We get rid of parentheses
F^2-11F+8F-88
We add all the numbers together, and all the variables
F^2-3F-88
Back to the equation:
-(F^2-3F-88)
We add all the numbers together, and all the variables
F-(F^2-3F-88)=0
We get rid of parentheses
-F^2+F+3F+88=0
We add all the numbers together, and all the variables
-1F^2+4F+88=0
a = -1; b = 4; c = +88;
Δ = b2-4ac
Δ = 42-4·(-1)·88
Δ = 368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{368}=\sqrt{16*23}=\sqrt{16}*\sqrt{23}=4\sqrt{23}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{23}}{2*-1}=\frac{-4-4\sqrt{23}}{-2} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{23}}{2*-1}=\frac{-4+4\sqrt{23}}{-2} $

See similar equations:

| -186=-6(3x+7) | | -170=5(6x-4) | | 2w^-5w=5 | | -16x(x^2-12)=0 | | 15/3=a/7 | | 5r-21=9 | | 4(-5n+4)-2n=192 | | 4(-5n+4)-2n=182 | | -3x-2x=15 | | (7x^-1)+x-6=0 | | 2x-6/3=4x-12/6 | | 17x-10=-4x+20 | | ​2​/e​​=6 | | x3+12=-52 | | -x+13=27 | | x/12=9/27= | | 2x+3-x=3 | | 5b+3b-6=26 | | X(y+2)+3=5 | | -5x+5=-1x+13 | | y+1y=10+10 | | 2x+3=9x+7 | | -`100=12t-4 | | 1/3+1/5+14=x | | 8/11=x/8 | | -x+8=-3x+6(x-4) | | 17-2m=9m-49 | | 2(7-4x)-3(5-2x)=10 | | 17-2m=9m-32 | | x/3+x/5+14/1=x | | 3/7x-9=5/8-3x | | 1033=16t^2 |

Equations solver categories