(4)/(3)x-(3)/(1)=x+7

Simple and best practice solution for (4)/(3)x-(3)/(1)=x+7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4)/(3)x-(3)/(1)=x+7 equation:



(4)/(3)x-(3)/(1)=x+7
We move all terms to the left:
(4)/(3)x-(3)/(1)-(x+7)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
4/3x-(x+7)-3=0
We get rid of parentheses
4/3x-x-7-3=0
We multiply all the terms by the denominator
-x*3x-7*3x-3*3x+4=0
Wy multiply elements
-3x^2-21x-9x+4=0
We add all the numbers together, and all the variables
-3x^2-30x+4=0
a = -3; b = -30; c = +4;
Δ = b2-4ac
Δ = -302-4·(-3)·4
Δ = 948
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{948}=\sqrt{4*237}=\sqrt{4}*\sqrt{237}=2\sqrt{237}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{237}}{2*-3}=\frac{30-2\sqrt{237}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{237}}{2*-3}=\frac{30+2\sqrt{237}}{-6} $

See similar equations:

| 2/3k+1/6=3/10k+1/3 | | 10a+11=3a+53 | | 1/2h+5=11 | | 7x+19)=(9x-3) | | 6g-6=10-7 | | b+2/5=b-2 | | 8.6x+4.4x-21=54 | | 8f-10=10f-20 | | 18+4c=74 | | (7w-7)(3w+7)=180 | | 5y=8y=16 | | 6(r+5)=24r | | 35y=35y | | 10m^2=-29m-10 | | Y—7=3+y | | 13y-3=5y+37 | | 4(7-3x)=10+6x) | | 1.4=(1-x)2.2 | | y/2+28=172 | | 5(2c+5)-5c=2(3c+2)+11 | | 13x-4=13x-51 | | 2-5(a+1)=8+a | | x^2+2025-256=0 | | (x+45)^2=256 | | 40=19+r/7 | | 3k^2+18=-21k | | 7(3k-7)=14 | | F(-4)=3-2x^2 | | Y=1/3x+33 | | -m=-180 | | 25=e/5-20 | | 5x0.4x0.03x0.002=0.00012 |

Equations solver categories