(3y-2)2=2(y2-2)+3y-8

Simple and best practice solution for (3y-2)2=2(y2-2)+3y-8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3y-2)2=2(y2-2)+3y-8 equation:



(3y-2)2=2(y2-2)+3y-8
We move all terms to the left:
(3y-2)2-(2(y2-2)+3y-8)=0
We add all the numbers together, and all the variables
-(2(+y^2-2)+3y-8)+(3y-2)2=0
We multiply parentheses
-(2(+y^2-2)+3y-8)+6y-4=0
We calculate terms in parentheses: -(2(+y^2-2)+3y-8), so:
2(+y^2-2)+3y-8
We multiply parentheses
2y^2+3y-4-8
We add all the numbers together, and all the variables
2y^2+3y-12
Back to the equation:
-(2y^2+3y-12)
We add all the numbers together, and all the variables
6y-(2y^2+3y-12)-4=0
We get rid of parentheses
-2y^2+6y-3y+12-4=0
We add all the numbers together, and all the variables
-2y^2+3y+8=0
a = -2; b = 3; c = +8;
Δ = b2-4ac
Δ = 32-4·(-2)·8
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{73}}{2*-2}=\frac{-3-\sqrt{73}}{-4} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{73}}{2*-2}=\frac{-3+\sqrt{73}}{-4} $

See similar equations:

| -5x+8+3x=12 | | 3c-52+c=180 | | x​2​​−20x+72=−3x | | 3(2-m)=9 | | 50+3x=3x(90)/30 | | 5+7x+4x=5 | | -3m+2(2+2m=-1 | | 3(x+1)-2(x-1=(x+5) | | -15+13x-11x=29 | | (3y-2)^=2(y^-2)+3y-8 | | D=2.5r;r=64 | | 12=85x+81/28 | | -x+1+7x=1 | | Y=-9+x² | | 3c+2-7=c | | 4z=6z-8 | | 2/3n+7=-18 | | 4d+30=7d | | 8a-72=6a-34 | | 7(2+x)=35+5(x-1,2) | | a-6=25 | | -6(6x-8)=-36x-48 | | 3c-5=c | | 5/7x-3/14=1/2 | | 1z-14z+8=14 | | (3u+61)+(2u+14)=180 | | -4x+3x-1=x-21 | | 5a-4+a-a=-14 | | 3n^2n=6 | | 22=2g | | 14=x/3+2 | | a+7=22 |

Equations solver categories