(3x-4)(4x-3)-(2x-7)(3x-2)=124

Simple and best practice solution for (3x-4)(4x-3)-(2x-7)(3x-2)=124 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-4)(4x-3)-(2x-7)(3x-2)=124 equation:



(3x-4)(4x-3)-(2x-7)(3x-2)=124
We move all terms to the left:
(3x-4)(4x-3)-(2x-7)(3x-2)-(124)=0
We multiply parentheses ..
(+12x^2-9x-16x+12)-(2x-7)(3x-2)-124=0
We get rid of parentheses
12x^2-9x-16x-(2x-7)(3x-2)+12-124=0
We multiply parentheses ..
12x^2-(+6x^2-4x-21x+14)-9x-16x+12-124=0
We add all the numbers together, and all the variables
12x^2-(+6x^2-4x-21x+14)-25x-112=0
We get rid of parentheses
12x^2-6x^2+4x+21x-25x-14-112=0
We add all the numbers together, and all the variables
6x^2-126=0
a = 6; b = 0; c = -126;
Δ = b2-4ac
Δ = 02-4·6·(-126)
Δ = 3024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3024}=\sqrt{144*21}=\sqrt{144}*\sqrt{21}=12\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{21}}{2*6}=\frac{0-12\sqrt{21}}{12} =-\frac{12\sqrt{21}}{12} =-\sqrt{21} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{21}}{2*6}=\frac{0+12\sqrt{21}}{12} =\frac{12\sqrt{21}}{12} =\sqrt{21} $

See similar equations:

| 12z-10=-4z+38 | | 720=x+9+145+156+120+x | | 11x–1=11x+9 | | x-37=109 | | n−9.02=3.81 | | 1/4c=10 | | x=18=58 | | x+13=81 | | 5x+31=12x+33452 | | 10(p+7)=-16p-8 | | -3r+16=4 | | 5x/24x=8 | | 22x+5=3x | | x+9x–6x+4x=20 | | 5b-10=-10b+5 | | 1/2(6x+2)=-4 | | 2x+3x-2=-12 | | 2x+10=4x-6.3482 | | 12q-64=13q-3 | | 6y+1.5=8 | | 7−2(3x+4)=8x | | 28r−9(2r+6=) | | 4+8n=60 | | 4^(4x)=65536 | | 5x^2-12x+11=x^2+6 | | 4=8n=60 | | -44p+77=-11 | | 4^4x=65536 | | 2x=6-5x | | 8x(2x+2)=2x+(3x-2) | | 3b2+b=10 | | 16x^2/(x^2-3x/2+0.375)=0 |

Equations solver categories