If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3b^2+b=10
We move all terms to the left:
3b^2+b-(10)=0
a = 3; b = 1; c = -10;
Δ = b2-4ac
Δ = 12-4·3·(-10)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-11}{2*3}=\frac{-12}{6} =-2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+11}{2*3}=\frac{10}{6} =1+2/3 $
| 16x^2/(x^2-3x/2+0.375)=0 | | 1/2(9x+8)=4 | | -16d+80=-10d+14 | | (x-3)^2=-16 | | -16+80=-10d+14 | | 4(5x-7)=10x-4+9x | | 11/4x=-21 | | z/7+9=15 | | 2(x-5)=4(x-4) | | -1/3(x+1)=4 | | -8+8z=10+z | | a/3-3=5 | | 3k+2(5k–3)=7 | | 7-b/3=1 | | 10x+4-6x=3x+12 | | 7+c/7=10 | | z7+1=3 | | 2x+6x+3=2(4x)-1 | | x/25=30/100 | | 7-u9=3 | | a/7+8=15 | | 2x+1+6x+13=2(5x) | | T=78-12h | | T=79-12h | | (1/x)+(1/(x-12))=(1/8) | | v6+8=11 | | 2n=21/2 | | T=14c+40 | | c/7+6=8 | | 21/2n=5500 | | c/2+10=17 | | 6x+22=77 |