(3x-1)(x+3)=(x+3)(x+3)

Simple and best practice solution for (3x-1)(x+3)=(x+3)(x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-1)(x+3)=(x+3)(x+3) equation:



(3x-1)(x+3)=(x+3)(x+3)
We move all terms to the left:
(3x-1)(x+3)-((x+3)(x+3))=0
We multiply parentheses ..
(+3x^2+9x-1x-3)-((x+3)(x+3))=0
We calculate terms in parentheses: -((x+3)(x+3)), so:
(x+3)(x+3)
We multiply parentheses ..
(+x^2+3x+3x+9)
We get rid of parentheses
x^2+3x+3x+9
We add all the numbers together, and all the variables
x^2+6x+9
Back to the equation:
-(x^2+6x+9)
We get rid of parentheses
3x^2-x^2+9x-1x-6x-3-9=0
We add all the numbers together, and all the variables
2x^2+2x-12=0
a = 2; b = 2; c = -12;
Δ = b2-4ac
Δ = 22-4·2·(-12)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-10}{2*2}=\frac{-12}{4} =-3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+10}{2*2}=\frac{8}{4} =2 $

See similar equations:

| x2+12x=-1 | | 15-2n=2-n | | X^2-64x+12=0 | | 4x=6(4^x2) | | 4*5^x-3(0.4)^2x=11 | | 4x+3=11 | | -3x+-6=27x+24 | | 12*6^2x-1=11^x+3 | | -2(2x-3)=3(x+)+10 | | 5x+15=9x+3 | | 5^x+3^2x=92 | | 4x^+72x-252=0 | | 4+3y=-36 | | 7x+1-1+5x=0 | | 77x+1-1+5x=0 | | 5(-1y+10)=-25 | | -2(-3y+8)=-34 | | 23x=183 | | 7x9x+12=4x-1384 | | 5b–4=2b+17 | | (6x+2.4)/35 9=2.25/1 3 | | 9-6(3x+4)=5 | | -7x+30=-17-10(x+4) | | -7x+30=-17-20(x+4) | | 10^(-x)=9^(2x) | | 2x+3x-9=126 | | 2^x+2^x.2^2=350 | | 2^x+2^x+2^2=350 | | (2x+1)^2+4=49 | | 4(x+5)+13=-5+3x | | (2x+10^2+4=49 | | -(2x+)=3x-5 |

Equations solver categories