If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+12x=-1
We move all terms to the left:
x2+12x-(-1)=0
We add all the numbers together, and all the variables
x^2+12x+1=0
a = 1; b = 12; c = +1;
Δ = b2-4ac
Δ = 122-4·1·1
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{35}}{2*1}=\frac{-12-2\sqrt{35}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{35}}{2*1}=\frac{-12+2\sqrt{35}}{2} $
| 15-2n=2-n | | X^2-64x+12=0 | | 4x=6(4^x2) | | 4*5^x-3(0.4)^2x=11 | | 4x+3=11 | | -3x+-6=27x+24 | | 12*6^2x-1=11^x+3 | | -2(2x-3)=3(x+)+10 | | 5x+15=9x+3 | | 5^x+3^2x=92 | | 4x^+72x-252=0 | | 4+3y=-36 | | 7x+1-1+5x=0 | | 77x+1-1+5x=0 | | 5(-1y+10)=-25 | | -2(-3y+8)=-34 | | 23x=183 | | 7x9x+12=4x-1384 | | 5b–4=2b+17 | | (6x+2.4)/35 9=2.25/1 3 | | 9-6(3x+4)=5 | | -7x+30=-17-10(x+4) | | -7x+30=-17-20(x+4) | | 10^(-x)=9^(2x) | | 2x+3x-9=126 | | 2^x+2^x.2^2=350 | | 2^x+2^x+2^2=350 | | (2x+1)^2+4=49 | | 4(x+5)+13=-5+3x | | (2x+10^2+4=49 | | -(2x+)=3x-5 | | 5x-11=28+3(x-5) |