(3x-1)(x+3)/x+6=0

Simple and best practice solution for (3x-1)(x+3)/x+6=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-1)(x+3)/x+6=0 equation:



(3x-1)(x+3)/x+6=0
Domain of the equation: x!=0
x∈R
We multiply parentheses ..
(+3x^2+9x-1x-3)/x+6=0
We multiply all the terms by the denominator
(+3x^2+9x-1x-3)+6*x=0
We add all the numbers together, and all the variables
(+3x^2+9x-1x-3)+6x=0
We get rid of parentheses
3x^2+9x-1x+6x-3=0
We add all the numbers together, and all the variables
3x^2+14x-3=0
a = 3; b = 14; c = -3;
Δ = b2-4ac
Δ = 142-4·3·(-3)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{58}}{2*3}=\frac{-14-2\sqrt{58}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{58}}{2*3}=\frac{-14+2\sqrt{58}}{6} $

See similar equations:

| 220=-x+46 | | 157-y=290 | | 163=-w+210 | | 2x^2+10x+30=0 | | x 4+1 2=x 3+1 6 | | 12u=42+5u | | 5x–3=2x–3= | | 5(x+3)=2x+20+3x-5 | | 13y-4-9y=12 | | 13y-4-9y=14 | | 7×-3y=1 | | -6x-11x=17 | | 1/3+1/y=5/12 | | 9y+1=8-2 | | 2x+12.8+117.6=180 | | 27x+4-2x=12-5x | | X•-5.2=-3.1x= | | -16n+7n-5n=-4+8n | | 13-5x+3x=23-12 | | -16+7n-5n=-4+8 | | X+x+x+3+7+x=21 | | 5x-3(2x-6)=8x+18 | | 8x-5=49 | | 4/5m-15=25 | | (2x-3)/3=(3x-2)/6 | | -7y+18=-5y−16 | | 20=2(40)+b | | 2x+54/8.9=5.4x*6-12 | | 13-21x=15+3x-10 | | 3x-1=3x+x | | 2x+87/673*6^2+2x=2.13 | | y=2(0)-60 |

Equations solver categories