(3x-1)(5x-4)=(3x-5)(3x-1)

Simple and best practice solution for (3x-1)(5x-4)=(3x-5)(3x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-1)(5x-4)=(3x-5)(3x-1) equation:



(3x-1)(5x-4)=(3x-5)(3x-1)
We move all terms to the left:
(3x-1)(5x-4)-((3x-5)(3x-1))=0
We multiply parentheses ..
(+15x^2-12x-5x+4)-((3x-5)(3x-1))=0
We calculate terms in parentheses: -((3x-5)(3x-1)), so:
(3x-5)(3x-1)
We multiply parentheses ..
(+9x^2-3x-15x+5)
We get rid of parentheses
9x^2-3x-15x+5
We add all the numbers together, and all the variables
9x^2-18x+5
Back to the equation:
-(9x^2-18x+5)
We get rid of parentheses
15x^2-9x^2-12x-5x+18x+4-5=0
We add all the numbers together, and all the variables
6x^2+x-1=0
a = 6; b = 1; c = -1;
Δ = b2-4ac
Δ = 12-4·6·(-1)
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-5}{2*6}=\frac{-6}{12} =-1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+5}{2*6}=\frac{4}{12} =1/3 $

See similar equations:

| 3x^2–18x+6=0 | | 3x2–18x+6=0 | | n/4+5=9 | | 4x(-5)=18 | | x+(x*20/100)=10 | | n+3n=81-5n | | n/2=7-2n/3 | | 10x=21-11x | | 6m=30+m | | 3+(5x)=11+(2x) | | 4h^2+192=0 | | a/10=40 | | 4x-6x-1.5=3x-50 | | 11.5+2x=3.5x-35 | | -2+5a=4a+2 | | h-13=49 | | 4-2b=30 | | 3.95+x=5.8 | | 12+8b=2b | | -2(8x-7)+(3x-2)=4x-2(3+x) | | -2(3x-7)+(3x-2)=4x-2(3+x) | | -2(5x-7)+(3x-2)=4x-2(3+x) | | 2=10x+50 | | 7y-6=2y*8 | | 2y/5=11y/3 | | r^2+200r-144=0 | | 8x^2-2x-156=0 | | 4x-4x^2+100-250+36x-45x^2=-234 | | 7^(2x+1)=49 | | 4x-4x^2+100-250+36x-45x^2=234 | | 4x-4x^2+100-350+36x-45x^2=-234 | | 4x-4x^2+100-350+36x-45x^2=234 |

Equations solver categories