(3x+17)+1/2x-5=180

Simple and best practice solution for (3x+17)+1/2x-5=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+17)+1/2x-5=180 equation:



(3x+17)+1/2x-5=180
We move all terms to the left:
(3x+17)+1/2x-5-(180)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
(3x+17)+1/2x-185=0
We get rid of parentheses
3x+1/2x+17-185=0
We multiply all the terms by the denominator
3x*2x+17*2x-185*2x+1=0
Wy multiply elements
6x^2+34x-370x+1=0
We add all the numbers together, and all the variables
6x^2-336x+1=0
a = 6; b = -336; c = +1;
Δ = b2-4ac
Δ = -3362-4·6·1
Δ = 112872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{112872}=\sqrt{4*28218}=\sqrt{4}*\sqrt{28218}=2\sqrt{28218}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-336)-2\sqrt{28218}}{2*6}=\frac{336-2\sqrt{28218}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-336)+2\sqrt{28218}}{2*6}=\frac{336+2\sqrt{28218}}{12} $

See similar equations:

| 10=t+-3 | | 3(5x+4=33 | | -2x(3x-2)+3x+3=34 | | a/15=19 | | 55=p+15 | | 1+3(x)=-15+5(x) | | (6x-3)(4x-3)=8x+14 | | -6(x+9)+8=-46 | | 20n-15=18-20n | | -26=5a+2(5a+2) | | 0=(60+.5t)-3.8t | | 3-9x+15=46 | | 4x+8+x=3x+36 | | 7a-11=3a+9 | | q-8=-3 | | d+3d-7=29 | | p/2=4/5 | | 4x-4+3x+16=180 | | -2=b-15 | | 9+12m=6+15m | | 15(x+1)-7(x+9)=4( | | -12-15+23=-5x | | -16=n-11 | | w/−52=208 | | 15(x+1)-7(x+9)=4(x-5) | | 978=16+n | | -42.7=-7t | | 80-v=27 | | 3–5(x+4)=8(2x–3) | | 4x-43x+16=x | | 10-v=43 | | a=3/45 |

Equations solver categories