(3x+1)(3x+1)+(x+2)(x+2)=65

Simple and best practice solution for (3x+1)(3x+1)+(x+2)(x+2)=65 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+1)(3x+1)+(x+2)(x+2)=65 equation:



(3x+1)(3x+1)+(x+2)(x+2)=65
We move all terms to the left:
(3x+1)(3x+1)+(x+2)(x+2)-(65)=0
We multiply parentheses ..
(+9x^2+3x+3x+1)+(x+2)(x+2)-65=0
We get rid of parentheses
9x^2+3x+3x+(x+2)(x+2)+1-65=0
We multiply parentheses ..
9x^2+(+x^2+2x+2x+4)+3x+3x+1-65=0
We add all the numbers together, and all the variables
9x^2+(+x^2+2x+2x+4)+6x-64=0
We get rid of parentheses
9x^2+x^2+2x+2x+6x+4-64=0
We add all the numbers together, and all the variables
10x^2+10x-60=0
a = 10; b = 10; c = -60;
Δ = b2-4ac
Δ = 102-4·10·(-60)
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2500}=50$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-50}{2*10}=\frac{-60}{20} =-3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+50}{2*10}=\frac{40}{20} =2 $

See similar equations:

| 245p^2-45=0 | | 5x-6+98=180 | | 15−2x=−7x | | 3(2-5(x+1)=4(2x+1) | | -9+8t=3+6t | | (2x)/3-7=6 | | 4x=-(x+20) | | (2n)+60=(4n+6) | | 180x6x=160x8x | | 9x2=18+11=29 | | 9x+1+-8x+9=180 | | 20-10y=5 | | 16x+3-14x+15=0 | | 6+12x+36=8.5x-20 | | 4x+17=3x+39 | | 125-4r+2=0 | | 16x-44=0 | | 6d=5d+6 | | -9+5n=-1-(n+2) | | 3.1w+8.1=0.04 | | 58/129=4x/43 | | 5r+40/15=4r-32/4 | | 3(u+2)+u=4(u+1)+10 | | -18+48=-5(x+4) | | 5p+5=-9+7p | | 5x–10=2(4x+7) | | 8x=2(x+36) | | 2x-4-11=-2x+4-11 | | –9h=–4−10h | | (3x+1)2+(x+2)2=65 | | 2/n=38 | | y/3+3.6=-1.2 |

Equations solver categories