(3x+1)(2x-1)-2x2=(2x-3)2+6x+5

Simple and best practice solution for (3x+1)(2x-1)-2x2=(2x-3)2+6x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+1)(2x-1)-2x2=(2x-3)2+6x+5 equation:



(3x+1)(2x-1)-2x^2=(2x-3)2+6x+5
We move all terms to the left:
(3x+1)(2x-1)-2x^2-((2x-3)2+6x+5)=0
We multiply parentheses ..
-2x^2+(+6x^2-3x+2x-1)-((2x-3)2+6x+5)=0
We calculate terms in parentheses: -((2x-3)2+6x+5), so:
(2x-3)2+6x+5
We add all the numbers together, and all the variables
6x+(2x-3)2+5
We multiply parentheses
6x+4x-6+5
We add all the numbers together, and all the variables
10x-1
Back to the equation:
-(10x-1)
We get rid of parentheses
-2x^2+6x^2-3x+2x-10x-1+1=0
We add all the numbers together, and all the variables
4x^2-11x=0
a = 4; b = -11; c = 0;
Δ = b2-4ac
Δ = -112-4·4·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-11}{2*4}=\frac{0}{8} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+11}{2*4}=\frac{22}{8} =2+3/4 $

See similar equations:

| x(x+6)=374 | | 713x+1=5x+14 | | (D^2-2D+4)y=0 | | 3y-9+6=18 | | 4k+5=33 | | 5x-3=8x+16 | | 3/2x-5)-x=-7(x+3) | | 5(4w+4)/3=-5 | | 10236*x/100=36112 | | 3x2-10x+-77=0 | | 8k+2=26 | | 1.5*6824*x/100=36112 | | 1.5*(4*1706)*x/100=36112 | | 62=a÷3+51 | | 1.5*(4*(590+580+536))*x/100=36112 | | 2x-5/3+2x-1/2=-1/10-3-x/5 | | 12.7=0.96+y | | (3t-6)=4 | | -5(3h+2)=3(h-1) | | 8k+2=52 | | 0.04x=1.2 | | 6t-7=2t+9 | | x*1.6=36112 | | 7(4w+4)/5=-2 | | (x+8)/7=3 | | (3x-1)(x+2)+5x=(2x+1)(x-3)+x2 | | 3(3s+1)=30 | | 2(2l+6)=48 | | 2.x+3=8 | | 8/11=y/10 | | 4t+7t-1=9t+8-7t | | −2x=18 |

Equations solver categories