(3x+1)(2x+4)+90=180

Simple and best practice solution for (3x+1)(2x+4)+90=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+1)(2x+4)+90=180 equation:



(3x+1)(2x+4)+90=180
We move all terms to the left:
(3x+1)(2x+4)+90-(180)=0
We add all the numbers together, and all the variables
(3x+1)(2x+4)-90=0
We multiply parentheses ..
(+6x^2+12x+2x+4)-90=0
We get rid of parentheses
6x^2+12x+2x+4-90=0
We add all the numbers together, and all the variables
6x^2+14x-86=0
a = 6; b = 14; c = -86;
Δ = b2-4ac
Δ = 142-4·6·(-86)
Δ = 2260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2260}=\sqrt{4*565}=\sqrt{4}*\sqrt{565}=2\sqrt{565}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{565}}{2*6}=\frac{-14-2\sqrt{565}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{565}}{2*6}=\frac{-14+2\sqrt{565}}{12} $

See similar equations:

| 1/8(3y-2)=1/4(y+5) | | 5x+70=30-5 | | 5x+70=30-5x | | x/10+5=x-13 | | 12=4a–8 | | x/10+5=x+18 | | 50-8x=16 | | 6(h-3)+2=14 | | (7x+24)=(10x) | | 3x+5(6-2x)=16 | | 5x+2=0.5(10x+8)-2 | | (13x+45)=(12x-40)=(6x+2)=(19x+3) | | 365+125x=215+175x | | 3r-(-3)=9 | | 2x=22.8 | | 50-8x=16;4 | | -50-6x=3x+46 | | 7(k-4)+2=16 | | t/3-8=-7 | | 6.n-3=15 | | -7+k=35 | | −x3−2=10−x3−2=10 | | −x3−2=10 | | 2(3x+6)=9x+2-3x+10 | | 12m=13.56 | | 14y-9y-5=19.15 | | 1+18x=10x+11 | | 10x–4x+11=6x–11 | | 7)35-5a=-30 | | (1÷8)*a=6 | | -8(f-5)+12=12 | | 15x—20=6x—(x+2)+(—x+3 |

Equations solver categories