(3x+1)(1-3x)+2(1-3x)=(x-1)

Simple and best practice solution for (3x+1)(1-3x)+2(1-3x)=(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+1)(1-3x)+2(1-3x)=(x-1) equation:



(3x+1)(1-3x)+2(1-3x)=(x-1)
We move all terms to the left:
(3x+1)(1-3x)+2(1-3x)-((x-1))=0
We add all the numbers together, and all the variables
(3x+1)(-3x+1)+2(-3x+1)-((x-1))=0
We multiply parentheses
(3x+1)(-3x+1)-6x-((x-1))+2=0
We multiply parentheses ..
(-9x^2+3x-3x+1)-6x-((x-1))+2=0
We calculate terms in parentheses: -((x-1)), so:
(x-1)
We get rid of parentheses
x-1
Back to the equation:
-(x-1)
We get rid of parentheses
-9x^2+3x-3x-6x-x+1+1+2=0
We add all the numbers together, and all the variables
-9x^2-7x+4=0
a = -9; b = -7; c = +4;
Δ = b2-4ac
Δ = -72-4·(-9)·4
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{193}}{2*-9}=\frac{7-\sqrt{193}}{-18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{193}}{2*-9}=\frac{7+\sqrt{193}}{-18} $

See similar equations:

| 2.75=n | | 8(2d-3)=(4d-7) | | 2x+27/3=9+x | | 2x+12+3x-47=180 | | (r+8)+r=34 | | 9x^2+7x-31=0 | | 5x+3=6+15x | | 18+4+m=(5-3)m | | 2800x^-2=0 | | 5x-6/11=x-7/9 | | 5(x+3)=2(2x-3) | | 15x-6/11=x-7/9 | | 3w-3=5w-13 | | 3=x÷12 | | 3x7+6÷2=30 | | h²+5h=24 | | 5(17)-38+90+7y-20=180 | | (8x-10)=3(4x-5) | | 8x-5-2x=10x+35 | | 5(w+6)-8w=21 | | 4h+350=3h+3*2 | | 27=9+3v | | 44-x*x*x=11 | | 3x+4=x-2+4x | | 5+30x=4(3+4x) | | x-8.4=-14.2 | | 5x-3+4=20 | | 50+.45x=43.50+.55x | | 5(b+1)=3(b+3 | | 1x+6=0x+8 | | 295=50+70h | | 90x-x=2x |

Equations solver categories