(350+2x)(200+2x)=74664

Simple and best practice solution for (350+2x)(200+2x)=74664 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (350+2x)(200+2x)=74664 equation:



(350+2x)(200+2x)=74664
We move all terms to the left:
(350+2x)(200+2x)-(74664)=0
We add all the numbers together, and all the variables
(2x+350)(2x+200)-74664=0
We multiply parentheses ..
(+4x^2+400x+700x+70000)-74664=0
We get rid of parentheses
4x^2+400x+700x+70000-74664=0
We add all the numbers together, and all the variables
4x^2+1100x-4664=0
a = 4; b = 1100; c = -4664;
Δ = b2-4ac
Δ = 11002-4·4·(-4664)
Δ = 1284624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1284624}=\sqrt{144*8921}=\sqrt{144}*\sqrt{8921}=12\sqrt{8921}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1100)-12\sqrt{8921}}{2*4}=\frac{-1100-12\sqrt{8921}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1100)+12\sqrt{8921}}{2*4}=\frac{-1100+12\sqrt{8921}}{8} $

See similar equations:

| 3(y+3)=2y+2 | | 8x+7=-7x+19 | | 2(5y-4)-(6y+8)=0 | | (56N)(2.5m)=0 | | -6x/7=6 | | -39+2x=-25 | | x/2+x/4+x/5+10000=x | | 3x+4+3x-28=108 | | 3x+4+3x-28=1=8 | | 7/9x-3=22 | | (x+11/8)=-3 | | (-7d+14)/2=0 | | 0.13x+x=30 | | 3^(2x+7)=5 | | 3*(2x+7)=5 | | 12^(-9x)=2 | | 2+1.25p=10-2.75p | | 20r-11r+3r=9 | | 17x-48=22 | | N^2-14n+7=2 | | 4/y-2+7/y+3=3 | | 40y-¹y=5 | | 3s(s-3)=12 | | −4(3-x)-(-3+5x)=2(-x+3x-1) | | 1/2x-6=3/4x+1 | | (6x-2)4=64 | | 1/3(3x+9)=2x+3 | | 7(x-8)+2=3-(x+1) | | 53x=323.3 | | 3a−(10+5a)=54 | | 50=200*x/100 | | (11x+9)(4x+5)=298 |

Equations solver categories