(3/8)x+11/7=2

Simple and best practice solution for (3/8)x+11/7=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/8)x+11/7=2 equation:



(3/8)x+11/7=2
We move all terms to the left:
(3/8)x+11/7-(2)=0
Domain of the equation: 8)x!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain (3/8)x-2+11/7=0
We add all the numbers together, and all the variables
(+3/8)x-2+11/7=0
We multiply parentheses
3x^2-2+11/7=0
We multiply all the terms by the denominator
3x^2*7+11-2*7=0
We add all the numbers together, and all the variables
3x^2*7-3=0
Wy multiply elements
21x^2-3=0
a = 21; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·21·(-3)
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{7}}{2*21}=\frac{0-6\sqrt{7}}{42} =-\frac{6\sqrt{7}}{42} =-\frac{\sqrt{7}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{7}}{2*21}=\frac{0+6\sqrt{7}}{42} =\frac{6\sqrt{7}}{42} =\frac{\sqrt{7}}{7} $

See similar equations:

| 900-34.5x=486 | | 780-5x=540 | | n×9+4=58 | | X/2+21=4x/3+24 | | 2w^+12w-182=0 | | 6x+67=100 | | 310m-278=722-190m | | 3.4+2.2=3-2.8x | | 9n=58 | | X+5=x+3/3 | | X-0.70x=50 | | X-0.90x=50 | | -9k=20+k | | -65=7+6k | | 6(2-x)=2x+1 | | 5.4n+4.8=(1.8n+1.6) | | -4.9x^2+9x+700=0 | | 42=31-5c | | 2(3x+2)-7=8x-12(x+3) | | -1/10y=3 | | 7+5x-3x-5+2x=29-5x | | 3/5y=1/10y+200 | | 4/5n=-32/10 | | 9A+12b=28.5 | | 3b2-8b=5b | | -6(x-2)-14(3-6x)=-36 | | 15/4=5n | | x-0.5x+6=10 | | -2x+6=-3+5x | | 4=c×3 | | 4=x•3 | | 2x+4+6x-100=180 |

Equations solver categories