(3/5)(p+2)=2

Simple and best practice solution for (3/5)(p+2)=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/5)(p+2)=2 equation:



(3/5)(p+2)=2
We move all terms to the left:
(3/5)(p+2)-(2)=0
Domain of the equation: 5)(p+2)!=0
p∈R
We add all the numbers together, and all the variables
(+3/5)(p+2)-2=0
We multiply parentheses ..
(+3p^2+3/5*2)-2=0
We multiply all the terms by the denominator
(+3p^2+3-2*5*2)=0
We get rid of parentheses
3p^2+3-2*5*2=0
We add all the numbers together, and all the variables
3p^2-17=0
a = 3; b = 0; c = -17;
Δ = b2-4ac
Δ = 02-4·3·(-17)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{51}}{2*3}=\frac{0-2\sqrt{51}}{6} =-\frac{2\sqrt{51}}{6} =-\frac{\sqrt{51}}{3} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{51}}{2*3}=\frac{0+2\sqrt{51}}{6} =\frac{2\sqrt{51}}{6} =\frac{\sqrt{51}}{3} $

See similar equations:

| 1-x+2x-4=180 | | 5/4x-1=1+4/5x | | 4−6x=86+3x | | 0.12y+1=0.095y-0.9 | | 5x+2=8x-14 | | 4 | | 4 | | 5×3y=-2 | | 10-4*x=-2 | | 5x+16=8x | | 9x-2=12x-4=20x+5 | | ∑(x-10)=27 | | |2x+1|=|5x-3| | | 6(-5n=7 | | 5x/4-2=38 | | 13-7r=-2(r-4) | | -45-9x=-5x+15 | | 5=k/10 | | 6(x-1)=14 | | 5x+12−3x=6x−24+8 | | -12x-11=10-11x | | -2=-x+4= | | -4(2x-3)-3x=45 | | -s=29 | | 15.6=3s | | 12x-93=27+8x | | 2x-4+3x+8=34 | | -5y-25=3y+15 | | x^2-16x+3=90 | | (x²)²-1=0 | | -3(2y+1)-7=-4(y+5)+2y | | 1/2(4x-6)=-4-1/3(9x+3) |

Equations solver categories