5/4x-1=1+4/5x

Simple and best practice solution for 5/4x-1=1+4/5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/4x-1=1+4/5x equation:



5/4x-1=1+4/5x
We move all terms to the left:
5/4x-1-(1+4/5x)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
5/4x-(4/5x+1)-1=0
We get rid of parentheses
5/4x-4/5x-1-1=0
We calculate fractions
25x/20x^2+(-16x)/20x^2-1-1=0
We add all the numbers together, and all the variables
25x/20x^2+(-16x)/20x^2-2=0
We multiply all the terms by the denominator
25x+(-16x)-2*20x^2=0
Wy multiply elements
-40x^2+25x+(-16x)=0
We get rid of parentheses
-40x^2+25x-16x=0
We add all the numbers together, and all the variables
-40x^2+9x=0
a = -40; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·(-40)·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*-40}=\frac{-18}{-80} =9/40 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*-40}=\frac{0}{-80} =0 $

See similar equations:

| 4−6x=86+3x | | 0.12y+1=0.095y-0.9 | | 5x+2=8x-14 | | 4 | | 4 | | 5×3y=-2 | | 10-4*x=-2 | | 5x+16=8x | | 9x-2=12x-4=20x+5 | | ∑(x-10)=27 | | |2x+1|=|5x-3| | | 6(-5n=7 | | 5x/4-2=38 | | 13-7r=-2(r-4) | | -45-9x=-5x+15 | | 5=k/10 | | 6(x-1)=14 | | 5x+12−3x=6x−24+8 | | -12x-11=10-11x | | -2=-x+4= | | -4(2x-3)-3x=45 | | -s=29 | | 15.6=3s | | 12x-93=27+8x | | 2x-4+3x+8=34 | | -5y-25=3y+15 | | x^2-16x+3=90 | | (x²)²-1=0 | | -3(2y+1)-7=-4(y+5)+2y | | 1/2(4x-6)=-4-1/3(9x+3) | | 65=0,218x-56 | | 65=0,218x-56,x |

Equations solver categories