(3/2)(5x+7)=16

Simple and best practice solution for (3/2)(5x+7)=16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/2)(5x+7)=16 equation:



(3/2)(5x+7)=16
We move all terms to the left:
(3/2)(5x+7)-(16)=0
Domain of the equation: 2)(5x+7)!=0
x∈R
We add all the numbers together, and all the variables
(+3/2)(5x+7)-16=0
We multiply parentheses ..
(+15x^2+3/2*7)-16=0
We multiply all the terms by the denominator
(+15x^2+3-16*2*7)=0
We get rid of parentheses
15x^2+3-16*2*7=0
We add all the numbers together, and all the variables
15x^2-221=0
a = 15; b = 0; c = -221;
Δ = b2-4ac
Δ = 02-4·15·(-221)
Δ = 13260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13260}=\sqrt{4*3315}=\sqrt{4}*\sqrt{3315}=2\sqrt{3315}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3315}}{2*15}=\frac{0-2\sqrt{3315}}{30} =-\frac{2\sqrt{3315}}{30} =-\frac{\sqrt{3315}}{15} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3315}}{2*15}=\frac{0+2\sqrt{3315}}{30} =\frac{2\sqrt{3315}}{30} =\frac{\sqrt{3315}}{15} $

See similar equations:

| 2x3=17 | | 3(x-8)=-6x+3 | | 2u-26=-4(u-1) | | -9(x+5)=-7x-35 | | -9(x-5)=-7x-35 | | -9v+11=-4(v+6) | | -20=8(u+2)-4u | | 5(w-4)+3w=4 | | 2.5x/18+(2.5x)=x/342 | | 5(w-4)-3w=4 | | 6=6(v+4)-8v | | 1/3(5x-2)=6 | | (2/3x)+1=1/6x-7 | | 7x-2(x+3)=14 | | 2(3x+1)+x=26 | | 4y-8+y+10=180 | | 8x-x=10 | | 1/224=40/x | | 5x-1=14=25-x | | 4y-8=y+10 | | 4-0,01x=-3 | | P1=(0,0)P2=(3,5)d(P1,P2)= | | 3x-3=67-11x | | 3y+8=4y+2 | | 9v+5v=-19-14 | | -9t+3t=-1+4 | | 3u-3=4u | | 3y–5+5y+20=135 | | 5z=4z-6 | | 10x+2x=7x+8 | | 6-17=-2x-6x | | 5(x+3)-2(3x-7)=4x-10 |

Equations solver categories