(3+4x)/(12x)=1/(2x)

Simple and best practice solution for (3+4x)/(12x)=1/(2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3+4x)/(12x)=1/(2x) equation:



(3+4x)/(12x)=1/(2x)
We move all terms to the left:
(3+4x)/(12x)-(1/(2x))=0
Domain of the equation: 12x!=0
x!=0/12
x!=0
x∈R
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(4x+3)/12x-(+1/2x)=0
We get rid of parentheses
(4x+3)/12x-1/2x=0
We calculate fractions
(8x^2+6x)/24x^2+(-12x)/24x^2=0
We multiply all the terms by the denominator
(8x^2+6x)+(-12x)=0
We get rid of parentheses
8x^2+6x-12x=0
We add all the numbers together, and all the variables
8x^2-6x=0
a = 8; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·8·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*8}=\frac{0}{16} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*8}=\frac{12}{16} =3/4 $

See similar equations:

| 2(u+6)-6u=4(u+3) | | 100+50+s=180 | | 2x+12+6=x+18 | | 5/7(x+1)=1/28(x+4) | | 3x+12-3x=12 | | t-4.25=4 | | -(3+6x)=x-31 | | 4x+x+17=7x-1 | | (n+10)/6=(n-3)/3 | | 15=-3y+9 | | -6x+4=6x-8 | | 143+90+z=180 | | 15-(2-3k)=2 | | 6(a+3)a=18+6a | | T=180-5t | | X+3+i=0 | | 5x+18+17=12x | | 2w2+4w+2=0 | | 7(2n+3)=7(5n+3)+7 | | X^2-27x+30=0 | | 7b−​5/​2=6b−​5/​7​​ | | 4n+2=2 | | =−5+y5/8 | | 132-39=x | | 4x-18+5x=7x+10 | | =−5+y58 | | 12x+4=7x+16 | | 5x+8=5x+9 | | 1/4y+10=1/9y. | | 2y+(-8)=5 | | 2=-8t^2+1.6t+4 | | 4x-7+x+20=6x-3 |

Equations solver categories