If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x-5)(2x)=180
We move all terms to the left:
(2x-5)(2x)-(180)=0
We multiply parentheses
4x^2-10x-180=0
a = 4; b = -10; c = -180;
Δ = b2-4ac
Δ = -102-4·4·(-180)
Δ = 2980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2980}=\sqrt{4*745}=\sqrt{4}*\sqrt{745}=2\sqrt{745}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{745}}{2*4}=\frac{10-2\sqrt{745}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{745}}{2*4}=\frac{10+2\sqrt{745}}{8} $
| 4x-2(x-2)=-3+4x-3 | | -(-2+r)=-8r+2 | | (7y+6)=10 | | −6x−4=2x+12 | | -8b(8b+5)-2=27+5b | | -(5a+6)=2(3+8) | | y/5-6=1 | | 10/x=0.25 | | y/6+5=-7 | | 8/x=16/64 | | y/6+5=-1 | | 3(4x-2)=4(3x-1+x | | v-3=-v+11 | | F(x)=(3x²-7x+9)³ | | 7(3r+11)+4r+5/2=21/2 | | 4.9t^2+2.44-10=0 | | 9a+5=4 | | (7m+13)+(5m-37)=180 | | t+21/5=-3 | | 3.2=-0.8x+6 | | 7=10y-23 | | 5+7v=40 | | -0.03x^2+0.63x-2.4=0 | | -3.3+x/4=-9.7 | | 4=10(5+6v) | | 4+12x=24 | | 960=29c+61 | | -23(j+352)=-713 | | 7=8(2+3u) | | 12(j+33)=864 | | 195=x+88 | | h-43/6=7 |