(2x-4)(2x+4)=46

Simple and best practice solution for (2x-4)(2x+4)=46 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-4)(2x+4)=46 equation:



(2x-4)(2x+4)=46
We move all terms to the left:
(2x-4)(2x+4)-(46)=0
We use the square of the difference formula
4x^2-16-46=0
We add all the numbers together, and all the variables
4x^2-62=0
a = 4; b = 0; c = -62;
Δ = b2-4ac
Δ = 02-4·4·(-62)
Δ = 992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{992}=\sqrt{16*62}=\sqrt{16}*\sqrt{62}=4\sqrt{62}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{62}}{2*4}=\frac{0-4\sqrt{62}}{8} =-\frac{4\sqrt{62}}{8} =-\frac{\sqrt{62}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{62}}{2*4}=\frac{0+4\sqrt{62}}{8} =\frac{4\sqrt{62}}{8} =\frac{\sqrt{62}}{2} $

See similar equations:

| 6/x=12/4 | | –5(z+93)=5 | | 8×-8=-4x+16 | | 7x-4=-3x+26 | | x/12=42/72 | | m/10+ 44=52 | | 88=24+6x | | m10+ 44=52 | | 5(w+9)=50 | | 8x=25,6+x | | 7n^2+42-112=0 | | 40/a=0.04/100 | | -6f+13=-2f-11 | | c/3=(-4) | | 1+-2/3x=3 | | 2+4x=x+38 | | a/40=0.04/100 | | 42=−7z−3 | | 3(2x-1)+5x=2(4x+2)+3+x | | 1+-2/3(-6)=y | | a−5=12 | | (x+1/3)=(5-x+2/7) | | 2x^2+6×+33=0 | | 4n-8=6n,8n= | | p−31—6=−21 | | 7x+1=-7x+57 | | 3=h+48/(-8) | | 0.75(200+x)=600 | | 5m+4=2m-8 | | -4+6(6-2x)=-7-36 | | 33-5n=n | | 95=4n-(-35) |

Equations solver categories