If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x-2)+(x+1)+x(+x+1)=(2x-9)+(x+1)+(x+8)+x
We move all terms to the left:
(2x-2)+(x+1)+x(+x+1)-((2x-9)+(x+1)+(x+8)+x)=0
We add all the numbers together, and all the variables
(2x-2)+(x+1)+x(x+1)-((2x-9)+(x+1)+(x+8)+x)=0
We multiply parentheses
x^2+(2x-2)+(x+1)+x-((2x-9)+(x+1)+(x+8)+x)=0
We get rid of parentheses
x^2+2x+x+x-((2x-9)+(x+1)+(x+8)+x)-2+1=0
We calculate terms in parentheses: -((2x-9)+(x+1)+(x+8)+x), so:We add all the numbers together, and all the variables
(2x-9)+(x+1)+(x+8)+x
We add all the numbers together, and all the variables
x+(2x-9)+(x+1)+(x+8)
We get rid of parentheses
x+2x+x+x-9+1+8
We add all the numbers together, and all the variables
5x
Back to the equation:
-(5x)
x^2-1x-1=0
a = 1; b = -1; c = -1;
Δ = b2-4ac
Δ = -12-4·1·(-1)
Δ = 5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{5}}{2*1}=\frac{1-\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{5}}{2*1}=\frac{1+\sqrt{5}}{2} $
| 3m−12=18 | | 2x+35+5x-22=160 | | 8x-16=2x+4 | | 2(x+8)4x=10x+4 | | 12+25+x=90 | | 4x-18+4x-18=90 | | 4.6=x-1.2 | | 20n-14=2 | | 491=z | | 5x-4x=8x+4 | | 100+x/5-x-x/5=3x-20 | | 102=20x-18 | | 5x-4x=8x | | (x+134)+(2x-88)=180 | | x/2-9=22 | | 3x+4=18+-4x | | 10y−4=6 | | 6x-35=3x+7 | | 5x+7=x+17 | | -5+2(-3-6)=-6x-17 | | 3x+10-4=2x | | -19w-7.24=-10.74-11.9w-7.3w | | 38x-19=437 | | -2=y/6+4 | | 5.6/g=2 | | 3(4x-5)=36 | | 11x-53=5x-11 | | 4(2y-2)=8(1-y) | | -17=u/2 | | -156-9x=-18x+6 | | 25-9p2=0 | | 25x+17x=-64 |