(2x-15+x)(2x-15+x)=180

Simple and best practice solution for (2x-15+x)(2x-15+x)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-15+x)(2x-15+x)=180 equation:



(2x-15+x)(2x-15+x)=180
We move all terms to the left:
(2x-15+x)(2x-15+x)-(180)=0
We add all the numbers together, and all the variables
(3x-15)(3x-15)-180=0
We multiply parentheses ..
(+9x^2-45x-45x+225)-180=0
We get rid of parentheses
9x^2-45x-45x+225-180=0
We add all the numbers together, and all the variables
9x^2-90x+45=0
a = 9; b = -90; c = +45;
Δ = b2-4ac
Δ = -902-4·9·45
Δ = 6480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6480}=\sqrt{1296*5}=\sqrt{1296}*\sqrt{5}=36\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-36\sqrt{5}}{2*9}=\frac{90-36\sqrt{5}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+36\sqrt{5}}{2*9}=\frac{90+36\sqrt{5}}{18} $

See similar equations:

| 135+x=x+54 | | 14x-13=0 | | 3x(x-2)=-7x+1 | | H1+h1=55 | | 5x/3+4=-1/3=x | | 5x+85+3x-30=180 | | 3-(2x+5)=-8 | | 11s+s+s-12s=9 | | 2x+18+6x−8=1.80 | | 2x+18+6x−8=080 | | 7x=19+1/2 | | 2x+18+6x−8=90 | | 15x+22=7x+65 | | 2y=2-6 | | 4•n=6+n | | 3(x-8)-9=-33 | | 3x-10+4x-12=27 | | 6x-27=90 | | 5(2+4)=-2(3x-1)-4 | | 2x+4/4=4x-2/3 | | 60-4x=10+6x | | Xx4X=144 | | 13=-8n-5n | | 2/5(2s+)=4.8 | | 1/2x-16=-48-1/4x | | S=180(n-2)/n | | 6(d-4)-1=8(d+3)+1 | | 8x+7=11x+2 | | 4-(x+2)-2x+8=0 | | 7x-3=-2x+1 | | -4(8x-7)=28 | | 2x-15=137 |

Equations solver categories