(2x-12)+(x+24)+(1/4x+51)=180

Simple and best practice solution for (2x-12)+(x+24)+(1/4x+51)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-12)+(x+24)+(1/4x+51)=180 equation:



(2x-12)+(x+24)+(1/4x+51)=180
We move all terms to the left:
(2x-12)+(x+24)+(1/4x+51)-(180)=0
Domain of the equation: 4x+51)!=0
x∈R
We get rid of parentheses
2x+x+1/4x-12+24+51-180=0
We multiply all the terms by the denominator
2x*4x+x*4x-12*4x+24*4x+51*4x-180*4x+1=0
Wy multiply elements
8x^2+4x^2-48x+96x+204x-720x+1=0
We add all the numbers together, and all the variables
12x^2-468x+1=0
a = 12; b = -468; c = +1;
Δ = b2-4ac
Δ = -4682-4·12·1
Δ = 218976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{218976}=\sqrt{16*13686}=\sqrt{16}*\sqrt{13686}=4\sqrt{13686}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-468)-4\sqrt{13686}}{2*12}=\frac{468-4\sqrt{13686}}{24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-468)+4\sqrt{13686}}{2*12}=\frac{468+4\sqrt{13686}}{24} $

See similar equations:

| 5x-3(3x-4)=20 | | 14=-6x-x | | y-42/2=10 | | -6=7+z | | (x+3)/5=-5 | | .2(-3a+5)=-4(a+4) | | 6(5x-8)+7x=26 | | 5x6=2x+3 | | F(x)=42x+300 | | r+20/7=4 | | 2+x=15-7/8+x | | -21=7x-4x | | 1/3(3x-6)=1/2(4x-2) | | -8+5x+8x=18 | | 6u+4u−–7=–13 | | 10p=-60 | | 14-4x=-5x+6+5 | | 3u+2(4u-4)=36 | | 5x+5=3x−5 | | m-(-3)=12 | | 2a-9-37=-47 | | –5+10q=3+9q | | 10x-40=-19-6x | | 18-(3/x)=9 | | -7=22‐w/3 | | -6x-170=-14x+70 | | 0.622=0.14*x+-0.0398 | | P-5p=4p+16 | | 13x+10-8x=65 | | 1240+921+x=1000 | | -8w-7=-9w | | 10/n-8=5/6 |

Equations solver categories