(2x-1)(x+5)+(2x+1)(x-2)=0

Simple and best practice solution for (2x-1)(x+5)+(2x+1)(x-2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-1)(x+5)+(2x+1)(x-2)=0 equation:



(2x-1)(x+5)+(2x+1)(x-2)=0
We multiply parentheses ..
(+2x^2+10x-1x-5)+(2x+1)(x-2)=0
We get rid of parentheses
2x^2+10x-1x+(2x+1)(x-2)-5=0
We multiply parentheses ..
2x^2+(+2x^2-4x+x-2)+10x-1x-5=0
We add all the numbers together, and all the variables
2x^2+(+2x^2-4x+x-2)+9x-5=0
We get rid of parentheses
2x^2+2x^2-4x+x+9x-2-5=0
We add all the numbers together, and all the variables
4x^2+6x-7=0
a = 4; b = 6; c = -7;
Δ = b2-4ac
Δ = 62-4·4·(-7)
Δ = 148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{148}=\sqrt{4*37}=\sqrt{4}*\sqrt{37}=2\sqrt{37}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{37}}{2*4}=\frac{-6-2\sqrt{37}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{37}}{2*4}=\frac{-6+2\sqrt{37}}{8} $

See similar equations:

| 8x-3=x+11 | | -13-20=-10x+115 | | y=60000(1.05)^51 | | 30x^2-80=0 | | 2=-3r+13 | | b-21=19 | | 5=m-8 | | 47=2x+2x+3 | | h+9.8=13 | | 20=2y-8 | | y=128(.5)^5 | | 4*3^2x-5=16 | | 1/2(-6r+8)=-6r+13 | | y=1(2)^24 | | 9x-32=2+5x | | 40=60+20=x | | 36=h-5 | | 87=15+a | | -10x15=17-6x | | 2-9x-1/3=1 | | 45-2x=3x+5 | | X^2+3x-1/9=0 | | y+y=21 | | y=100(1.04)^12 | | 2x=3+2x2 | | 25=x+8 | | 7(w-2)=-35 | | 0.05(10m-9)=0.25(4m-3) | | 7.3h-5.18=-51.9 | | 22-3y-20+10y=144 | | -2x2+2x-3=0 | | ×-y=7.5 |

Equations solver categories