(2x+8)(4x-16)=128

Simple and best practice solution for (2x+8)(4x-16)=128 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+8)(4x-16)=128 equation:



(2x+8)(4x-16)=128
We move all terms to the left:
(2x+8)(4x-16)-(128)=0
We multiply parentheses ..
(+8x^2-32x+32x-128)-128=0
We get rid of parentheses
8x^2-32x+32x-128-128=0
We add all the numbers together, and all the variables
8x^2-256=0
a = 8; b = 0; c = -256;
Δ = b2-4ac
Δ = 02-4·8·(-256)
Δ = 8192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8192}=\sqrt{4096*2}=\sqrt{4096}*\sqrt{2}=64\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64\sqrt{2}}{2*8}=\frac{0-64\sqrt{2}}{16} =-\frac{64\sqrt{2}}{16} =-4\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64\sqrt{2}}{2*8}=\frac{0+64\sqrt{2}}{16} =\frac{64\sqrt{2}}{16} =4\sqrt{2} $

See similar equations:

| 6(s-2)+3(s+1)=9 | | 3x+5=7×-8 | | 3⋅1=f/72-5 | | 1/3(6x-3)-1/4(20x+8)=-6 | | 4/35=h/40 | | 10w+9-3w=-19 | | -x+32=3x+4 | | 2(x-4)-1=9 | | 8x+1/3=-5 | | (22/3)=6-(1/12)x | | 22/3=6-1/12x | | 3(25-b)+b=225 | | 4t+2t=30 | | 2(2-c)-3c=1.5 | | Y=6500x-1E+07 | | 5+11x=-28 | | 42=2(n+1) | | 4c-1=0 | | X(2)+(24+y)2=84 | | 3^(y+5)=8 | | 6(d+3)=3d | | 3,6/x=54/17 | | c+1.3=6 | | 4+8x-14=-27 | | x=5(9-M)=3 | | 6x+8-x=3x+9+x | | 3m+6m=37 | | 3(c-9)+4=4c-8 | | 2x+6=-8x+6 | | f-9/8=9/5​ | | 2x+10+5x=180 | | 2^{2x}=21 |

Equations solver categories