(2x+7)(x-1)+(2x+7)(5x+4)=0

Simple and best practice solution for (2x+7)(x-1)+(2x+7)(5x+4)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+7)(x-1)+(2x+7)(5x+4)=0 equation:



(2x+7)(x-1)+(2x+7)(5x+4)=0
We multiply parentheses ..
(+2x^2-2x+7x-7)+(2x+7)(5x+4)=0
We get rid of parentheses
2x^2-2x+7x+(2x+7)(5x+4)-7=0
We multiply parentheses ..
2x^2+(+10x^2+8x+35x+28)-2x+7x-7=0
We add all the numbers together, and all the variables
2x^2+(+10x^2+8x+35x+28)+5x-7=0
We get rid of parentheses
2x^2+10x^2+8x+35x+5x+28-7=0
We add all the numbers together, and all the variables
12x^2+48x+21=0
a = 12; b = 48; c = +21;
Δ = b2-4ac
Δ = 482-4·12·21
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1296}=36$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-36}{2*12}=\frac{-84}{24} =-3+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+36}{2*12}=\frac{-12}{24} =-1/2 $

See similar equations:

| (2x-3)^2-(4x-5)(x+1)=0 | | -e-6=5 | | (2-3x)^2=1 | | (x-9)^2-16=0 | | -6(3t+12)+2t(3t+12)=0 | | 6(3t+12)-2t(3t+12)=0 | | 8h-4=6h | | 5m-1=1 | | 12(5-14k)=144 | | 5(4+2x)=-5x-(2x+8) | | 0=-1.3x+8 | | 6a-8=4a+9 | | 5a+7=2a+16 | | 2x^2+4=8x-2 | | (-3x+7)(-x+15)=0 | | x+2x+3x=102 | | -3x+17=5+20 | | -3x+17=5x20 | | 5(4x-1)=45 | | 0=7+17t-16t^2 | | 5/6x^2-2.5x-90=0 | | 8(v+1)=3v-42 | | -3y-9=3(y+9) | | 6(x+3)=9x+27 | | -6=2(y-2)-4y | | -7u+4(u+4)=13 | | 8(x-3)+3x=-13 | | H-7=e | | 3a+30=180 | | 3z/10+5=1 | | 5xx=8 | | -1.8x=-0.0684 |

Equations solver categories