If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x+3)(-4x-2)+2x=6(4x-6)+34
We move all terms to the left:
(2x+3)(-4x-2)+2x-(6(4x-6)+34)=0
We add all the numbers together, and all the variables
2x+(2x+3)(-4x-2)-(6(4x-6)+34)=0
We multiply parentheses ..
(-8x^2-4x-12x-6)+2x-(6(4x-6)+34)=0
We calculate terms in parentheses: -(6(4x-6)+34), so:We get rid of parentheses
6(4x-6)+34
We multiply parentheses
24x-36+34
We add all the numbers together, and all the variables
24x-2
Back to the equation:
-(24x-2)
-8x^2-4x-12x+2x-24x-6+2=0
We add all the numbers together, and all the variables
-8x^2-38x-4=0
a = -8; b = -38; c = -4;
Δ = b2-4ac
Δ = -382-4·(-8)·(-4)
Δ = 1316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1316}=\sqrt{4*329}=\sqrt{4}*\sqrt{329}=2\sqrt{329}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-2\sqrt{329}}{2*-8}=\frac{38-2\sqrt{329}}{-16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+2\sqrt{329}}{2*-8}=\frac{38+2\sqrt{329}}{-16} $
| 2(x-2)=8x+6-2(-5x-2) | | X^2+7x12=0 | | 8-7x-3=-23+3x-12 | | -3(w+4)=-2(8w-1)+9w | | -2(-2y+3)-8y=2(y-7)-2 | | 1/6x+9=-4 | | 1+2(3v-2)=-3(5v-1)+5v | | -4x-9/7=-7 | | 1.3a+2.5=2.7a-2.4 | | 5x-9+2(5x+2)=-3(x+3) | | (X-2)2=x2+1 | | 3(v+1)=-7(2v-1)+3v | | 1/6x+3=-1 | | (x+3)(x-4)=-2x+9 | | 7(u-2)-9=-3(-6u+9)-5u | | 1/4x+7=-4 | | 3a+6-3=100 | | 5-2x=-7x+10 | | -6/4r+3r=1/3r+14/3 | | X+6/3-x+6=x/15 | | 54x-4=-4 | | -5/4x=2.25 | | 0=-16t^2-16t+4 | | 0=16t^2-16t+4 | | -4y+16=-2(4y-4) | | 49-3w=4w | | -3/2x=1.5 | | 4(x+2)/3=2x-1 | | 7u+4u=u | | y=4(y-2)-5 | | 17/5x-4x=-2x+21/20 | | 17/5x-4x=-2x+21/2 |