(2x+24)+(4x+43)+(x2+1)=180

Simple and best practice solution for (2x+24)+(4x+43)+(x2+1)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+24)+(4x+43)+(x2+1)=180 equation:



(2x+24)+(4x+43)+(x2+1)=180
We move all terms to the left:
(2x+24)+(4x+43)+(x2+1)-(180)=0
We add all the numbers together, and all the variables
(+x^2+1)+(2x+24)+(4x+43)-180=0
We get rid of parentheses
x^2+2x+4x+1+24+43-180=0
We add all the numbers together, and all the variables
x^2+6x-112=0
a = 1; b = 6; c = -112;
Δ = b2-4ac
Δ = 62-4·1·(-112)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{484}=22$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-22}{2*1}=\frac{-28}{2} =-14 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+22}{2*1}=\frac{16}{2} =8 $

See similar equations:

| -(-3+7a)+4a=-6a+6(a-1) | | 14+7y=9y | | -6k-8=-32 | | X=120-⅔y | | 2+5p+3=1+2p-p | | 5x-62x=9 | | 7m-2=8m | | (x+14)=(9x+4) | | 3x+3x+2=6x+2 | | 4(3z2)=9z7 | | k–0.5=2.3 | | x-9.2=8.3 | | 3x40=3x | | 4x-25=6x-51+x+14 | | 5p17=2(2p7 | | 3^x+1+18×3^-x=29 | | 50=3v+11 | | 5t2+40t=0 | | (8x+7)=(x+16) | | -2(b-8)=-(2b+3) | | -22=-30+x | | x=2,x=5 | | c-5/5-c=1 | | 14m-6-11m=21 | | 3|–6r|=19 | | (5x+3)/2=4 | | 2x+9-5=25+9 | | 2/5/m-4=16 | | 6s+2=17(s-2) | | -5(8+4x)+10(9-2x)=50 | | 2-7(n-3)=-5(2n-1) | | 3(2x+9)=-49+46 |

Equations solver categories