(2x+20)(2x+10)-(10)(20)=216

Simple and best practice solution for (2x+20)(2x+10)-(10)(20)=216 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+20)(2x+10)-(10)(20)=216 equation:



(2x+20)(2x+10)-(10)(20)=216
We move all terms to the left:
(2x+20)(2x+10)-(10)(20)-(216)=0
We add all the numbers together, and all the variables
(2x+20)(2x+10)-1236=0
We multiply parentheses ..
(+4x^2+20x+40x+200)-1236=0
We get rid of parentheses
4x^2+20x+40x+200-1236=0
We add all the numbers together, and all the variables
4x^2+60x-1036=0
a = 4; b = 60; c = -1036;
Δ = b2-4ac
Δ = 602-4·4·(-1036)
Δ = 20176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20176}=\sqrt{16*1261}=\sqrt{16}*\sqrt{1261}=4\sqrt{1261}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-4\sqrt{1261}}{2*4}=\frac{-60-4\sqrt{1261}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+4\sqrt{1261}}{2*4}=\frac{-60+4\sqrt{1261}}{8} $

See similar equations:

| (2x+20)(2x+10)-(10x20)=216 | | 1/2x+10=x+4 | | 6+f/4=17 | | 3x-1+2(3x+1)=9x-5 | | 4^2(x+1)=8^2x | | -2k+5=13 | | 7=-2x-1 | | 13.7b+6.5=-2.3b+8.3 | | a=1/7(41a+102) | | 4x-12=-2+12 | | x+(x^2)=378 | | (2l)^2+l^2=17^2 | | 2x+20=3x+1 | | 1/8x=1/4= | | 0.3+0.2x=0.6x-1.3 | | 4y=38+2y+8 | | 7t-t-8=5t-8= | | (49x^2+28x+4)/(7x-3)=0 | | 13+7/9y=12 | | 4(2a-8)=1/7(49+70) | | 4v=-8(1/2v-1 | | 6(w^2-13)(w^2+10)=0 | | 2(x+2)=8(x-4) | | 5x+9+4x=3x-15 | | 40-4x=-5(4x+3)-5(-8-3x) | | 1/3v=-2/3(1/2v-1) | | 8-⅜k=-4 | | x/4x-1=2/9 | | |-4+5x|=6 | | 12x-3=7x-18 | | 4n-40=7(-2n+5) | | -(6x+3)+17=-16 |

Equations solver categories