(2x+15)(2x-33)=2x

Simple and best practice solution for (2x+15)(2x-33)=2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+15)(2x-33)=2x equation:



(2x+15)(2x-33)=2x
We move all terms to the left:
(2x+15)(2x-33)-(2x)=0
We add all the numbers together, and all the variables
-2x+(2x+15)(2x-33)=0
We multiply parentheses ..
(+4x^2-66x+30x-495)-2x=0
We get rid of parentheses
4x^2-66x+30x-2x-495=0
We add all the numbers together, and all the variables
4x^2-38x-495=0
a = 4; b = -38; c = -495;
Δ = b2-4ac
Δ = -382-4·4·(-495)
Δ = 9364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9364}=\sqrt{4*2341}=\sqrt{4}*\sqrt{2341}=2\sqrt{2341}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-2\sqrt{2341}}{2*4}=\frac{38-2\sqrt{2341}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+2\sqrt{2341}}{2*4}=\frac{38+2\sqrt{2341}}{8} $

See similar equations:

| 18/t=3+6 | | 2x+1=2(2x+1)+5 | | 2x+16=6x-28 | | -x+23=26 | | -16=-9x+11 | | 7-0.75x=-7(3/28x+2) | | 5(x+1)-6=44 | | 4x+7(-5x-10)=-8 | | 36=2(x+5)+4 | | 3n-5=-35 | | 5(4x-4)=4x+28 | | 45/3=x/60 | | x+19=4(2x+3) | | 5/2x-2)+2x-4=9 | | n-18=23 | | −8(−3x−2)=24x-15 | | 2(5x+4/3=-3(3x+2)-7/3 | | 11x+1=80° | | −2(8n−3)=43(n+7) | | 3x+4=2x+11=180 | | 200000=yX2500000 | | -0.7(15x+3)=-3x-9 | | 12x+15=69° | | 9x+56.84=77.99 | | 13/7=12/v | | 13/7=12/v | | 2x+13+7x-6=2x+70 | | 2x+13+7x-6=2x+70 | | 80°=20x | | 3(x-3)=-8(2x-3) | | 3(x-3)=-8(2x-3) | | 3(x-3)=-8(2x-3) |

Equations solver categories