(2x+12)+(x+36)+(1/6x+56)=180

Simple and best practice solution for (2x+12)+(x+36)+(1/6x+56)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+12)+(x+36)+(1/6x+56)=180 equation:



(2x+12)+(x+36)+(1/6x+56)=180
We move all terms to the left:
(2x+12)+(x+36)+(1/6x+56)-(180)=0
Domain of the equation: 6x+56)!=0
x∈R
We get rid of parentheses
2x+x+1/6x+12+36+56-180=0
We multiply all the terms by the denominator
2x*6x+x*6x+12*6x+36*6x+56*6x-180*6x+1=0
Wy multiply elements
12x^2+6x^2+72x+216x+336x-1080x+1=0
We add all the numbers together, and all the variables
18x^2-456x+1=0
a = 18; b = -456; c = +1;
Δ = b2-4ac
Δ = -4562-4·18·1
Δ = 207864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{207864}=\sqrt{36*5774}=\sqrt{36}*\sqrt{5774}=6\sqrt{5774}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-456)-6\sqrt{5774}}{2*18}=\frac{456-6\sqrt{5774}}{36} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-456)+6\sqrt{5774}}{2*18}=\frac{456+6\sqrt{5774}}{36} $

See similar equations:

| u-2/21=7/9 | | q-12/25=-1/25 | | 2x²-1=x²+24 | | 90=2x+25 | | x+1/16=-1/16 | | y+11/6=-5/21 | | 6x+14=3x+19 | | 8d=17 | | 8n+10=24n+7 | | 2t=t+29 | | 8+x/2=41 | | 3x+13=81 | | 19=5m-8-6m | | -8d+2=40d+2 | | 8d+6=-8-186 | | 2z+(5/2)=37/2 | | 3.5x+x=140 | | 0.025(a+2)=2.81 | | 7n+10=7n+2 | | 2/3y+7=23 | | 0.5/10=x/60 | | -47÷6k=3k-2 | | 104.5=15+.434(x) | | 104.5=15+.434x | | (x+1)(x-3)=117 | | 3n=2=17 | | 3-2x(5-2x)=4X²+X-30 | | (4a+2)(3-2a)=0 | | x-3/5=81/2 | | 7k+11=3k-1 | | 125+13x=21×-75 | | x+9=(56/100(x+9+x)) |

Equations solver categories