(2x)/(x+1)+4x=6

Simple and best practice solution for (2x)/(x+1)+4x=6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x)/(x+1)+4x=6 equation:



(2x)/(x+1)+4x=6
We move all terms to the left:
(2x)/(x+1)+4x-(6)=0
Domain of the equation: (x+1)!=0
We move all terms containing x to the left, all other terms to the right
x!=-1
x∈R
We add all the numbers together, and all the variables
4x+2x/(x+1)-6=0
We multiply all the terms by the denominator
4x*(x+1)+2x-6*(x+1)=0
We add all the numbers together, and all the variables
2x+4x*(x+1)-6*(x+1)=0
We multiply parentheses
4x^2+2x+4x-6x-6=0
We add all the numbers together, and all the variables
4x^2-6=0
a = 4; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·4·(-6)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*4}=\frac{0-4\sqrt{6}}{8} =-\frac{4\sqrt{6}}{8} =-\frac{\sqrt{6}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*4}=\frac{0+4\sqrt{6}}{8} =\frac{4\sqrt{6}}{8} =\frac{\sqrt{6}}{2} $

See similar equations:

| ((2x)/(x+1))+4x=6 | | x-x*0.2=1000 | | 4x+10=-2x4 | | 2x-1^2=14 | | 3(1.3^x)=5 | | -x+202=280 | | 70-x=160 | | 74=217-w | | 3x+10+7x-58=2x-8 | | 5(x+20)=120 | | -5x+3=7x+27 | | -18-4(-2g-15)=5g | | 2/9h-4=-2/3+3+5/9h | | 6t-34=38 | | 56/a=6 | | X+2x+17=147 | | B+7=a/7 | | x/15=-0.025 | | 8x-56=112 | | 4.9x^2-29.4x=0 | | 2x+3=4x-x(3*5) | | (40/100)=(x/60) | | 4p+5=20-2p | | X/t=11/5 | | 2x-20=3x+30 | | 10x+20(70-x)=820 | | a=4(3.14)2^2 | | 3/7x+1/14=+2-x | | 4m+5m+m=1500. | | A=3.16r2 | | (6x+10)+(8x+3)=180 | | 13x+4=35 |

Equations solver categories