If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x)(3x-20)=180
We move all terms to the left:
(2x)(3x-20)-(180)=0
We multiply parentheses
6x^2-40x-180=0
a = 6; b = -40; c = -180;
Δ = b2-4ac
Δ = -402-4·6·(-180)
Δ = 5920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5920}=\sqrt{16*370}=\sqrt{16}*\sqrt{370}=4\sqrt{370}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4\sqrt{370}}{2*6}=\frac{40-4\sqrt{370}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4\sqrt{370}}{2*6}=\frac{40+4\sqrt{370}}{12} $
| -4(6x+3)=24x+12 | | y=490-14(30) | | 16=2(u-4)+6u | | |6c-3|=21 | | 4-2j=-j | | 12=5(w+6)-7w | | -9j-9=-10j | | 7x+3(x-7)=19 | | -10-4v=-3v | | y=310-25(7) | | -4-3p=-4-9 | | -10−4v=-3v | | Sx7-33=100 | | X+1/3=7x+2/4 | | (5x+30)=90 | | -9-8s=-9s | | -1-8h=-10h-9 | | 12n^2-6n=27 | | 7+7p=8p | | 5/6=x-10/3x+6 | | 18x+30=20x-6 | | F(-7)=6(1-x) | | Y=4-5x+x^2 | | 10+3b=6+15b | | -2r+8=-7-r+5 | | f=30/8=8 | | 39-7x=-4(7x+7)+ | | n/0.3=66.66666667 | | 2(4x+9)=-24=2 | | 2(4x+9)=24=2 | | 30-7x=-4(7x+7)+4 | | -8+6t=4t+10 |