If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2k+1)(2k+3)=0
We multiply parentheses ..
(+4k^2+6k+2k+3)=0
We get rid of parentheses
4k^2+6k+2k+3=0
We add all the numbers together, and all the variables
4k^2+8k+3=0
a = 4; b = 8; c = +3;
Δ = b2-4ac
Δ = 82-4·4·3
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4}{2*4}=\frac{-12}{8} =-1+1/2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4}{2*4}=\frac{-4}{8} =-1/2 $
| 6(2x+5)=11(x+14) | | (2t-3)^2=2t+5t-26 | | x^2+16x+15=8x+3 | | 2x-50+x+20=180 | | -8(x+1)=4(x-11 | | 5(x+7)=6(3x=8) | | 38+-0.5z=228 | | -2/7+x=11/15 | | 4x=42+x | | 2x-33=12 | | 5x/3+2/3=1 | | -4(2x-6)+6x=-3x+9 | | 5x+6=116 | | -x÷-0.2=3.2 | | (9999999999999-9+885759455555)*0=857549787x | | X/2-x/8=8 | | 111111-999999+654565456-8*0=x+7777-6(9999999-8)*(8) | | 2x+5x=4x+11 | | 0,15x=70 | | 0.15x=70 | | 5(3x-9)=110 | | x*0.15=70 | | 4=5*p-2 | | 8(x+40)=1.5 | | 111111-999999+654565456-8*0=x+7777-6 | | (111111-999999+654565456-8)*0=x | | 111111-999999+654565456-8*0=x | | 11x+2x=18 | | 8x+7x=9/3 | | 7*x+66-7=777 | | a/3-2=14 | | x=1x10-3 |