(2c+5)(7-2c)+(2c+5)(8c+9)=0

Simple and best practice solution for (2c+5)(7-2c)+(2c+5)(8c+9)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2c+5)(7-2c)+(2c+5)(8c+9)=0 equation:



(2c+5)(7-2c)+(2c+5)(8c+9)=0
We add all the numbers together, and all the variables
(2c+5)(-2c+7)+(2c+5)(8c+9)=0
We multiply parentheses ..
(-4c^2+14c-10c+35)+(2c+5)(8c+9)=0
We get rid of parentheses
-4c^2+14c-10c+(2c+5)(8c+9)+35=0
We multiply parentheses ..
-4c^2+(+16c^2+18c+40c+45)+14c-10c+35=0
We add all the numbers together, and all the variables
-4c^2+(+16c^2+18c+40c+45)+4c+35=0
We get rid of parentheses
-4c^2+16c^2+18c+40c+4c+45+35=0
We add all the numbers together, and all the variables
12c^2+62c+80=0
a = 12; b = 62; c = +80;
Δ = b2-4ac
Δ = 622-4·12·80
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(62)-2}{2*12}=\frac{-64}{24} =-2+2/3 $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(62)+2}{2*12}=\frac{-60}{24} =-2+1/2 $

See similar equations:

| P-5=1.5n | | F(x)=-8x+15 | | i+3=8.5 | | 21x+5=133 | | 5(n+7)=3n-4 | | 5s=28 | | 6(3b-1)+5(4b+3)=7 | | 12/3=k/8 | | 3(3b-1)+5(4b+3)=7 | | C=2x3.14 | | s2–26s=0 | | i=5-7 | | (x-7)^4=15 | | 1/3/1/5=n2/3 | | 7.9+x/4.3=6.9 | | 9x+8+4x+3=180 | | r+1/2=1650 | | x+27.98=53.52 | | 6a-3a*a=-1 | | 2^x+3=8^2x | | 7x+3/16=3/5 | | −12x2−x+4=0 | | 7x+3/16=315 | | 10/k=20/12 | | -5/8x+12=-7/18 | | 9x=+12 | | 20x+9,32+7,54+11,12=53.52 | | x2=-25. | | 1/2(x-12)=-1/2x+4 | | 5+7+10+x=x | | -2(5c+6)+8c=24 | | x*25+x=9 |

Equations solver categories