(2a/3)-(3a/6)=(1/6)

Simple and best practice solution for (2a/3)-(3a/6)=(1/6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2a/3)-(3a/6)=(1/6) equation:



(2a/3)-(3a/6)=(1/6)
We move all terms to the left:
(2a/3)-(3a/6)-((1/6))=0
We add all the numbers together, and all the variables
(+2a/3)-(+3a/6)-((+1/6))=0
We get rid of parentheses
2a/3-3a/6-((+1/6))=0
We calculate fractions
432a^2/()+(-9a)/()+()/()=0
We add all the numbers together, and all the variables
432a^2/()+(-9a)/()+1=0
We multiply all the terms by the denominator
432a^2+(-9a)+1*()=0
We add all the numbers together, and all the variables
432a^2+(-9a)=0
We get rid of parentheses
432a^2-9a=0
a = 432; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·432·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*432}=\frac{0}{864} =0 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*432}=\frac{18}{864} =1/48 $

See similar equations:

| 180=x+(3x-24)+132 | | 21+(-y)=2y | | 1375=x+(0.06x) | | -18=3y+(-6) | | −13x=3 | | 9+2x=12x+8 | | −13x=39 | | 290=100-x | | 5x-10+11x=3(4-2x) | | 11/4y-8=21/4y | | 4x/5-15=1x/5 | | 4y+20=-2y | | 4p-2=10(p=3) | | 1/25=5n | | 23*y-9-12*y-9=11 | | 2x+29=-3 | | 0.2d-0.06+0.5d=0.6+d | | 12x+34=7x+26 | | 4/3=11/y | | 12/11=11/x | | 7x+14=8(x=1) | | 4(3+2x)=70 | | 5y–23=2 | | x/2=6=14 | | |x+10|=13 | | 6x-4=-2+7 | | 7×p+7=91 | | 25t-20=15 | | 6x-4=-2x=7 | | x^2-81x+51=0 | | -(y+5)=2(3y+1) | | 10+x*3=36+x |

Equations solver categories