If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2-90)+90(B+45)+B+11/2B=540
We move all terms to the left:
(2-90)+90(B+45)+B+11/2B-(540)=0
Domain of the equation: 2B!=0determiningTheFunctionDomain 90(B+45)+B+11/2B-540+(2-90)=0
B!=0/2
B!=0
B∈R
We add all the numbers together, and all the variables
90(B+45)+B+11/2B-540+(-88)=0
We add all the numbers together, and all the variables
B+90(B+45)+11/2B-628=0
We multiply parentheses
B+90B+11/2B+4050-628=0
We multiply all the terms by the denominator
B*2B+90B*2B+4050*2B-628*2B+11=0
Wy multiply elements
2B^2+180B^2+8100B-1256B+11=0
We add all the numbers together, and all the variables
182B^2+6844B+11=0
a = 182; b = 6844; c = +11;
Δ = b2-4ac
Δ = 68442-4·182·11
Δ = 46832328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$B_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$B_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{46832328}=\sqrt{36*1300898}=\sqrt{36}*\sqrt{1300898}=6\sqrt{1300898}$$B_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6844)-6\sqrt{1300898}}{2*182}=\frac{-6844-6\sqrt{1300898}}{364} $$B_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6844)+6\sqrt{1300898}}{2*182}=\frac{-6844+6\sqrt{1300898}}{364} $
| 3x/1.6=2/1.5 | | 299=7x-5-x | | 4k-9-10k=k+5 | | 4x-5=2+1/3(9x-15) | | 54=y/4+42 | | 9(n−4)=54 | | -6(x-6)=7x-29 | | .7h+2=65 | | 15X-31=9x+1 | | (z/4)-3=-6 | | 6(-3x-2)=-102 | | 19=4j+7 | | -4p+5=27-4p | | -u+8=-4+5u | | 500=0.5x | | 6(x+3)-9=-10+37 | | -9v-39=-6(v+4) | | y^2=1/4 | | 4.8x+8=7 | | X4=y16=y-2 | | 4=t+9/3 | | -5t+10=-10-3t | | b+20/9=3 | | 2x+4+8x+12=3x+22 | | 7x+10=-4x+65 | | -9(x+3)-6=-7x-13 | | 2x+10-3x=20 | | Y=500-7.5x | | y+16=6 | | 10x=8x=18 | | 1.5x+500=2x | | -9(x+3)-6=-7x-3 |