(23)2=y2+(14)2

Simple and best practice solution for (23)2=y2+(14)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (23)2=y2+(14)2 equation:



(23)2=y2+(14)2
We move all terms to the left:
(23)2-(y2+(14)2)=0
We add all the numbers together, and all the variables
-(+y^2+142)+232=0
We get rid of parentheses
-y^2-142+232=0
We add all the numbers together, and all the variables
-1y^2+90=0
a = -1; b = 0; c = +90;
Δ = b2-4ac
Δ = 02-4·(-1)·90
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*-1}=\frac{0-6\sqrt{10}}{-2} =-\frac{6\sqrt{10}}{-2} =-\frac{3\sqrt{10}}{-1} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*-1}=\frac{0+6\sqrt{10}}{-2} =\frac{6\sqrt{10}}{-2} =\frac{3\sqrt{10}}{-1} $

See similar equations:

| 5x÷2x-1=2 | | 7d+17=87 | | 12.7^2+8.2^2=x^2 | | 18=10+4w | | 18.x=27 | | 12m-52=8m | | (y^{5})^{3}=(y5)3 | | (6+a)÷3=3 | | 8x=5090 | | 6c+c-12=4c-8 | | x+35=3x+12 | | 2(23−2x)+3x=48+x2(23−2x)+3x=48+x | | 12(x-2)+3x=1/2(+6)+2 | | 7x+6x=90 | | -36=n/3 | | (23)=y+(14) | | 4.3=k/6 | | 4(9)+b=0 | | 3.9=n/2 | | (5m-9)+(4m+2)=0 | | 8a+16-9=13a+82 | | 5x-2-(-7)+7x=-21 | | w+(-4)=36 | | -4(2x-5)-6=4(3x+6) | | 7w87;w=12 | | 5x+3=43;x=8 | | 7x-3x=14+9x | | 39.95+0.01x=9.95+0.05x | | 3x(2x+20)=2,8 | | 11x+1=17+7x | | -5m+-2=13 | | 12=n+ |

Equations solver categories