(21/8x+30)4=51/3x

Simple and best practice solution for (21/8x+30)4=51/3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (21/8x+30)4=51/3x equation:



(21/8x+30)4=51/3x
We move all terms to the left:
(21/8x+30)4-(51/3x)=0
Domain of the equation: 8x+30)4!=0
x∈R
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(21/8x+30)4-(+51/3x)=0
We multiply parentheses
84x-(+51/3x)+120=0
We get rid of parentheses
84x-51/3x+120=0
We multiply all the terms by the denominator
84x*3x+120*3x-51=0
Wy multiply elements
252x^2+360x-51=0
a = 252; b = 360; c = -51;
Δ = b2-4ac
Δ = 3602-4·252·(-51)
Δ = 181008
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{181008}=\sqrt{144*1257}=\sqrt{144}*\sqrt{1257}=12\sqrt{1257}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(360)-12\sqrt{1257}}{2*252}=\frac{-360-12\sqrt{1257}}{504} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(360)+12\sqrt{1257}}{2*252}=\frac{-360+12\sqrt{1257}}{504} $

See similar equations:

| 4x-23=21 | | -2.5r=75 | | 4r+9=4r+13 | | m-11=74 | | 3(c—12)=15 | | 2x^-11-39=0 | | 8-5x=10+x | | .19x+x=20 | | 3x+5+x-7=25 | | 6=2x-4=4 | | (18x+5)+(x+10)=180 | | x/11-8x/11=35/11 | | c+2=99 | | 6=4-3c5c-c | | 2x^-11=39 | | 3x-4(x+2)=13-4x | | 3x+14=4x-20 | | -4z=27 | | 4k+48=4k+8 | | s/1=-3 | | 21r-7-r+5=-52 | | 9z+2-2z=8+6z+2 | | 13k-5k-7k=11 | | 53​ x+3=12 | | 3(7+2y)=30+7(y-1) | | 5x-12=3x=12 | | 10x-15-8x=2x-15 | | 3(r+5)-4(1-6r)=-70 | | 4x+4+18=12x-2 | | 4n+9=(5=2n) | | z/6+79=89 | | 28-6x=3(x+3)-8 |

Equations solver categories