(2/5)b-(1/4)b=3

Simple and best practice solution for (2/5)b-(1/4)b=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/5)b-(1/4)b=3 equation:



(2/5)b-(1/4)b=3
We move all terms to the left:
(2/5)b-(1/4)b-(3)=0
Domain of the equation: 5)b!=0
b!=0/1
b!=0
b∈R
Domain of the equation: 4)b!=0
b!=0/1
b!=0
b∈R
We add all the numbers together, and all the variables
(+2/5)b-(+1/4)b-3=0
We multiply parentheses
2b^2-b^2-3=0
We add all the numbers together, and all the variables
b^2-3=0
a = 1; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·1·(-3)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*1}=\frac{0-2\sqrt{3}}{2} =-\frac{2\sqrt{3}}{2} =-\sqrt{3} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*1}=\frac{0+2\sqrt{3}}{2} =\frac{2\sqrt{3}}{2} =\sqrt{3} $

See similar equations:

| m−/52=2 | | 3t^2(-t-10)=0 | | 9(4x+1)=45 | | 7t+5(4+t)=24+5(2+t) | | D=-2000t+9000 | | m−52=2 | | -r=(25×6) | | C=1388x+24,963 | | 7(6.5+x)=87.5 | | 5(z+3)-2z=35+z+10 | | -3x=-8x+8x | | -2y-21=4y+3 | | 143=-10-9x | | 28=u/3-10 | | 6x+10=86 | | 6x+3(1-x)=0 | | -0.74x+0.44=6.3 | | 4x+2=8x. | | r^2+5r-50=0 | | -8(2c+1)=13c=-26 | | -3(x+3)=4x-9+2(4x+5) | | r/8-8=-10 | | 4/5k-2/3=2/6 | | -3=-5+u | | 4x-25=52 | | 0.5x+8=48 | | -2x×16=0 | | -8(2c+1)=13c=-16 | | x+10=2x+12 | | 6x+10+94=180 | | 8r=8() | | 5=6+b/14 |

Equations solver categories