(2/3a)+a=600

Simple and best practice solution for (2/3a)+a=600 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/3a)+a=600 equation:



(2/3a)+a=600
We move all terms to the left:
(2/3a)+a-(600)=0
Domain of the equation: 3a)!=0
a!=0/1
a!=0
a∈R
We add all the numbers together, and all the variables
(+2/3a)+a-600=0
We add all the numbers together, and all the variables
a+(+2/3a)-600=0
We get rid of parentheses
a+2/3a-600=0
We multiply all the terms by the denominator
a*3a-600*3a+2=0
Wy multiply elements
3a^2-1800a+2=0
a = 3; b = -1800; c = +2;
Δ = b2-4ac
Δ = -18002-4·3·2
Δ = 3239976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3239976}=\sqrt{4*809994}=\sqrt{4}*\sqrt{809994}=2\sqrt{809994}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1800)-2\sqrt{809994}}{2*3}=\frac{1800-2\sqrt{809994}}{6} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1800)+2\sqrt{809994}}{2*3}=\frac{1800+2\sqrt{809994}}{6} $

See similar equations:

| 79y+28=35-14y | | 2(4x-65)=2x-4 | | 21.4−2.7w−1.1=1.5w−4.9 | | -3x+7=-5/3x+1/3 | | 3X-16=x=89 | | x+15/3-2=6 | | 2/5x-10=62 | | 15x0=7.5 | | 15x0=15 | | 75+53+8x-4=180 | | 19−(2c+3)=2(c+3)+c | | 8×-20y-10=8 | | 7a-10=20-4a | | 6x=8-96x | | 5/4x+5=2/4 | | -2(b-2)=-3+2b | | -4(4-5x)-(1-x)=2(x-4) | | 1/2x=-2+3/4 | | 22.31=4g+3.87 | | 3²+x²=10² | | -110=-4c—6c | | 18-v=274 | | -3(x-3)-7=2 | | -1=1/2a | | x+x-1+x-2=54 | | 5/4x+5=1/4+1/4 | | 25x-32=13x+9 | | 3e+6=12 | | 23=3m​ +26 | | x-1+x+x+1=54 | | 4a+10=3a-5 | | 53.3(.6-x)^2=4x^2 |

Equations solver categories