(2/3)y-1=1/2

Simple and best practice solution for (2/3)y-1=1/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/3)y-1=1/2 equation:



(2/3)y-1=1/2
We move all terms to the left:
(2/3)y-1-(1/2)=0
Domain of the equation: 3)y!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
(+2/3)y-1-(+1/2)=0
We multiply parentheses
2y^2-1-(+1/2)=0
We get rid of parentheses
2y^2-1-1/2=0
We multiply all the terms by the denominator
2y^2*2-1-1*2=0
We add all the numbers together, and all the variables
2y^2*2-3=0
Wy multiply elements
4y^2-3=0
a = 4; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·4·(-3)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*4}=\frac{0-4\sqrt{3}}{8} =-\frac{4\sqrt{3}}{8} =-\frac{\sqrt{3}}{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*4}=\frac{0+4\sqrt{3}}{8} =\frac{4\sqrt{3}}{8} =\frac{\sqrt{3}}{2} $

See similar equations:

| 5(x+19)=900 | | (3x-8)/(12)+x=(3x+8)/(3)+1 | | 3k=-7-8 | | 194=m+44 | | 12.6j+8=10.2j+4 | | 9z^-5/2=21z^-3/2 | | 3(x+2)=4x-4 | | -8k+9=-3-9k | | 6X+15y=45 | | 10n^2-8n-14=0 | | 31/4+1+2x=65 | | 4(1g+8)=7+4g | | 3w-5=8(6-5w) | | 6y+49=13y | | 3y+12=7+3y+5 | | 2×k=26 | | 32-3u=u | | 1)-3x=18 | | X56=7(3+x) | | 3x+4x+5=40 | | 4-1/4(8x-12=-4 | | 9z^2=21z | | 15+6v=11v | | 8x+3(2-3x)=38 | | 3x-8/12+x=3x+8/3+1 | | 45+x=16 | | 16x-4=20x+4 | | 11v+6v=15 | | -4u-9=-9-4u | | -135=5a-8(5a-5) | | 2(x−4)+2x=−2(x−5) | | 5(x)(x)=288 |

Equations solver categories