(2/3)x-(5/9)x=-1

Simple and best practice solution for (2/3)x-(5/9)x=-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/3)x-(5/9)x=-1 equation:



(2/3)x-(5/9)x=-1
We move all terms to the left:
(2/3)x-(5/9)x-(-1)=0
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 9)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/3)x-(+5/9)x-(-1)=0
We add all the numbers together, and all the variables
(+2/3)x-(+5/9)x+1=0
We multiply parentheses
2x^2-5x^2+1=0
We add all the numbers together, and all the variables
-3x^2+1=0
a = -3; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-3)·1
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*-3}=\frac{0-2\sqrt{3}}{-6} =-\frac{2\sqrt{3}}{-6} =-\frac{\sqrt{3}}{-3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*-3}=\frac{0+2\sqrt{3}}{-6} =\frac{2\sqrt{3}}{-6} =\frac{\sqrt{3}}{-3} $

See similar equations:

| -1/2x+5=18 | | (1/5p)+(9/5)+6=30 | | 2/3x-5/9x=-1 | | 4^4x-28=64 | | 8x÷3-2x=-2÷3 | | x=(4x+45) | | 1/5p+9/5+6=30 | | |x-4|=-2 | | 7v-4=38 | | 3x²+4x=15 | | 49+3x=68+4x | | 5x+89=13x-7 | | 10x+10+2x+2=180 | | 220c+2=220c-4 | | 43=4x+7+2(3x-4) | | 11=2x-16+x-9 | | 2h(60+130)=-220+4h | | 5x−18=4x+36 | | 54=4x-1+3x-1 | | 75+-2x=11-10x | | 6y=1+34 | | (k-6)^2=49 | | 8m+5=25 | | 7x²-2x=1 | | 3-x-4=2x+1 | | (3x+1)/(5)=-1 | | 2x+3(x-2)=7 | | 2x+8=9x-11 | | 1.5x10^x=0.15 | | 1.5x10-x=0.15 | | 5f-45=60 | | 3(5)-3y=7 |

Equations solver categories