(2/3)x-(3/4)=3

Simple and best practice solution for (2/3)x-(3/4)=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/3)x-(3/4)=3 equation:



(2/3)x-(3/4)=3
We move all terms to the left:
(2/3)x-(3/4)-(3)=0
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain (2/3)x-3-(3/4)=0
We add all the numbers together, and all the variables
(+2/3)x-3-(+3/4)=0
We multiply parentheses
2x^2-3-(+3/4)=0
We get rid of parentheses
2x^2-3-3/4=0
We multiply all the terms by the denominator
2x^2*4-3-3*4=0
We add all the numbers together, and all the variables
2x^2*4-15=0
Wy multiply elements
8x^2-15=0
a = 8; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·8·(-15)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{30}}{2*8}=\frac{0-4\sqrt{30}}{16} =-\frac{4\sqrt{30}}{16} =-\frac{\sqrt{30}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{30}}{2*8}=\frac{0+4\sqrt{30}}{16} =\frac{4\sqrt{30}}{16} =\frac{\sqrt{30}}{4} $

See similar equations:

| 0=k—7 | | 3.5-0.02x=2.26 | | 6=4m-7+4m | | 0.7x+-0.6=-0.2x-0.42 | | 1.4=12x-13 | | 2=11+29(m+3) | | 6.3x=-5 | | -9(v+3)+2v+6=5v+8 | | 4v+2+4v=2 | | 3(2n-3)=-6 | | 3x-10+5x+14+46=180 | | 3(2x+8)=-35+17 | | -16=7x-8-8x | | 7x+3+9x=2x-5 | | 9v-3=10v | | 5+24c=3(8c-4)+7 | | 5x+2=13+4x | | -16=7x-8-8 | | 70+(15+9)w=205 | | 8(x-8)+24=-17x-2(x-3) | | 7x-13=12x+17 | | 89-u=174 | | 9y-8-6y+3=0 | | q+2q+2q-2=2.1 | | -5-4x=2x-11 | | -y/5=10 | | X-0.2x-0.7=0 | | |x|-3=0 | | 0.1x–0.006=0.08x+0.134 | | -5.5+2x=3.7+2x | | 4.3x+10+2x=5 | | 2(w+1)=6w-38 |

Equations solver categories