If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2/3)x+1=15/9
We move all terms to the left:
(2/3)x+1-(15/9)=0
Domain of the equation: 3)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+2/3)x+1-(+15/9)=0
We multiply parentheses
2x^2+1-(+15/9)=0
We get rid of parentheses
2x^2+1-15/9=0
We multiply all the terms by the denominator
2x^2*9-15+1*9=0
We add all the numbers together, and all the variables
2x^2*9-6=0
Wy multiply elements
18x^2-6=0
a = 18; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·18·(-6)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3}}{2*18}=\frac{0-12\sqrt{3}}{36} =-\frac{12\sqrt{3}}{36} =-\frac{\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3}}{2*18}=\frac{0+12\sqrt{3}}{36} =\frac{12\sqrt{3}}{36} =\frac{\sqrt{3}}{3} $
| 1x•12=69 | | 12+3x=3-4x | | 16x+20=29 | | 3(8+5b)=32+7b | | -2p2-15p+25=0 | | 3(c-3)=2(c-6) | | 2(w-4)=-18 | | 5x+4=3(x–1)+13 | | (1+r)^10=170/90 | | 3x²+12x-15=0 | | 96=(48+6k) | | 3x+2(x+2)=2(2x-5) | | 6x –(3x +8)=16 | | X1+x2+x3=78 | | -3p-2(2-6p)=6(p-5)-22 | | p15=2 | | 8(x+6)=9(x+6) | | 6x²+3x= | | 2*2*2(x+6)=3*2(x+6) | | -4-6p=6p-8 | | 4(3x+6=12 | | 6x²+3x+24= | | 8x-38=-36 | | (5x+1)=21 | | p+2÷5=-7 | | -3p-3=-6.3 | | 90=2+4n | | v/7-2=-5 | | 2x^2+14x=-3-6x^2 | | 36+24+m=99 | | x+2+11=4x-5 | | (x^2-7x)=3-6x^2 |