(2/3)x+10=80

Simple and best practice solution for (2/3)x+10=80 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/3)x+10=80 equation:



(2/3)x+10=80
We move all terms to the left:
(2/3)x+10-(80)=0
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/3)x+10-80=0
We add all the numbers together, and all the variables
(+2/3)x-70=0
We multiply parentheses
2x^2-70=0
a = 2; b = 0; c = -70;
Δ = b2-4ac
Δ = 02-4·2·(-70)
Δ = 560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{560}=\sqrt{16*35}=\sqrt{16}*\sqrt{35}=4\sqrt{35}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{35}}{2*2}=\frac{0-4\sqrt{35}}{4} =-\frac{4\sqrt{35}}{4} =-\sqrt{35} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{35}}{2*2}=\frac{0+4\sqrt{35}}{4} =\frac{4\sqrt{35}}{4} =\sqrt{35} $

See similar equations:

| 20x+5+14x=145 | | 16=-12+4x | | x/6=0.7 | | 4x-58=-10 | | 14-2(x-3)-11=1 | | 1+10x=21 | | 5k+-6=-8 | | k-2=-13/3 | | 8x+3+2x+2=6x+1 | | -3.6=-0.3a11.2 | | 5k-6=- | | 3/5p=39/25 | | (2x+5)=2x+5 | | (7x-15)(5x+25)=0 | | 2.4k+8+3.6=-7 | | 25.5=1.5y+1.2 | | x+(2/3)x+10=80 | | 4x-20=x^2 | | 6z+11=5z+2 | | 4x-7x+-21=-36 | | 5/6h=1/10 | | 12/y+24/y=4 | | 7n*3=24 | | 0.4t=0.2+0.2t | | 13^x-5=3^5x | | 1/2(8t+5)=t+5/4 | | 2x^2-8x+6=1008 | | 2y=8y+12 | | -n/15-4=-4 | | 2x=3/4x | | 2x-8(x+6)=1008 | | 2x+1=225 |

Equations solver categories