If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2/3)(6a+9)=20.4
We move all terms to the left:
(2/3)(6a+9)-(20.4)=0
Domain of the equation: 3)(6a+9)!=0We add all the numbers together, and all the variables
a∈R
(+2/3)(6a+9)-(20.4)=0
We add all the numbers together, and all the variables
(+2/3)(6a+9)-20.4=0
We multiply parentheses ..
(+12a^2+2/3*9)-20.4=0
We multiply all the terms by the denominator
(+12a^2+2-(20.4)*3*9)=0
We calculate terms in parentheses: +(+12a^2+2-(20.4)*3*9), so:We get rid of parentheses
+12a^2+2-(20.4)*3*9
determiningTheFunctionDomain 12a^2+2-(20.4)*3*9
We add all the numbers together, and all the variables
12a^2-548.8
Back to the equation:
+(12a^2-548.8)
12a^2-548.8=0
a = 12; b = 0; c = -548.8;
Δ = b2-4ac
Δ = 02-4·12·(-548.8)
Δ = 26342.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{26342.4}}{2*12}=\frac{0-\sqrt{26342.4}}{24} =-\frac{\sqrt{}}{24} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{26342.4}}{2*12}=\frac{0+\sqrt{26342.4}}{24} =\frac{\sqrt{}}{24} $
| 3(4x-2)-2=10x+4 | | -2x-19=-3 | | (1/8)(x+24)=9 | | -0.5=2x-1 | | (1/8)(p+24)=9 | | 4.6p-28=3.2p-14 | | y/2-7=19 | | 0.5=2x-1 | | 10t+8=3-2t | | X+x*4+x-6=72 | | x-5/8=0 | | (x-5)/8=0 | | 2(4x-7)=8x- | | 2(x-3)/5=3x/4+3/5 | | x2+8x=0 | | 4x+3(x-7)=0 | | (-5)=6x+100 | | 5(12x+3)=4(2x-1) | | 2(4x-4)=-8-3x | | 0.8y-0.3y=6.5 | | 4.2+5.6=x | | -4w+7=-w-5-3w+9 | | 4x^+90x-27=0 | | 11/2b-41/2=11/2+3/4 | | (X/5)-(x/2)=1 | | 3x+×=32 | | 7x-8=4x-16 | | 7x-10=35-2x | | 42x^2+10x-12=7x^2-3x | | (T/5)-(t/2)=1 | | m+6/2=-2(6-4m) | | 3x+x=260 |